[MUSIC PLAYING] Now we have to step up our voltage needing the boost converter. The boost converter itself transfers energy to the output once the switch is open. We have to know that the bandwidth in continuous conduction mode is limited here by low freq and right half plane zero. The LC filter at the boost converter is located at the input so we have a continuous current at the input and the reflected ripple to the source will be low. But here we got the pulse current at the output so high output ripple to the load. We've got also a direct connection input to output via the inductor and the rectifier. So if you want to have a short circuit protection here, you need an additional load switch.
For high boost factor and big output currents, maybe bigger than four amps, the rectifier should be also replaced by a synchronous rectifier, so a FET that is emulating the diode function. And for bigger currents, maybe 10 amps or even more, a multiphase and interleaved boost power stages are recommended to reduce the stress, thermal hot spot, and reflected ripple, same that we heard before for the back converter.
If we have now a detailed look on the boost power stage, we see that the switch Q1 is now ground referred and we got the inductor high side. So if we close now the switch Q1, input voltage is present across inductor L1 forcing demagnetizing current. If we open the switch, the voltage at the inductor turns and this inductor voltage is added to our input voltage. The rectifier D1 starts to conduct and we are delivering energy to the output and we are recharging our output capacitor as the switch is open. The transfer function itself is basically the output voltage-- is basically the input voltage plus the inductor voltage and this could be simply calculated by 1 plus t on divided by t off. [音乐播放] 现在我们必须 逐渐提高电压, 因而需要升压转换器。 一旦开关断开后, 升压转换器本身 将能量传输到输出。 我们必须知道, 连续导通模式下的 带宽在此处 受低频和 右半平面零点的 限制。 升压转换器 上的 LC 滤波器 位于输入端, 因此我们 可在输入端得到 连续电流,并且电源的反射纹波 将会很低。 但此处,我们 在输出端得到的 是脉冲电流,因此会给负载 带来很高的输出纹波。 通过电感器和整流器, 我们还可以得到 输入到输出的 直接连接。 因此,如果您在此处 需要短路保护, 则需要一个额外的 负载开关。 对于高升压因子 和大输出电流, 可能大于 4 安培,还应该将 整流器替换为 同步整流器, 让 FET 模拟 二极管功能。 对于更大的电流, 可能为 10 安培甚至更大, 建议使用多相和 交错式升压 功率级以降低 应力、减少热点 和反射纹波, 这与我们以前听说的 降压转换器的情况相同。 如果我们现在仔细地 看一下升压功率级, 我们会发现开关 Q1 现在以接地点为基准, 而且电感器 成为了高侧。 因此,如果 我们现在闭合开关 Q1, 则跨电感器 L1 存在输入电压, 强制产生消磁电流。 如果我们断开该开关, 电感器上的电压 将会变化,并且此电感器电压 将会与输入电压相加。 整流器 D1 开始导通, 当开关断开时, 我们将会向 输出传输能量, 并且对输出电容器 进行充电。 传输函数 本身基本上 是输出电压 -- 基本上是 输入电压加上 电感器电压, 这可以通过 1 加上 T-on 除以 T-off 进行简单计算。 This website is under heavy load (queue full) We're sorry, too many people are accessing this website at the same time. We're working on this problem. Please try again later.