Sort by:
Automotive EMC Standards and Best Practices
Duration:
ADAS Offerings in EvoCar
Duration:
OpenVX implementation on TI TDA ADAS SoCs
Duration:
mmWave Imaging Radar - Automotive Applications
Duration:
Viewing the car surround with FPD-Link
Augmenting the driver experience (Tracking, Controlling, Monitoring, Detecting)
From ADAS to autonomy and everything in between
Duration:
Designing the future of smart driving
Duration:
Enabling automotive proximity sensing with ultrasonic
Duration:
Optimizing DC/DC Converters for EMI in Automotive Systems
EMI (electromagnetic interference) mitigation is a critical step in the design process in most electronic systems, and especially so in the automotive world. In many cases, automotive OEM emissions requirements are even more stringent than both national and international standards bodies like the FCC. Unfortunately, by their nature, switching regulators are sources of EMI; but, in order to keep power supply designs small and efficient, switchers are a critical component. So how can you reap the benefits of a switching regulator while still meeting challenging EMI requirements?
DS90UB953/954 System Design & Operation
The DS90UB953/954 System Design & Operation video series offers training for FPD-Link III devices for ADAS. FPD-Link III devices such as the DS90UB953-Q1/ DS90UB954-Q1 support sensor use over serial link for Advanced Driver Assist Systems (ADAS) in the automotive industry. In this training series, we will guide you through step-by-step procedures to initialize and bring-up the “Sensor-Serializer-Deserializer-ISP” link to an optimal performance level.
DS90UB953/954 System Design & Operation: Overview
This introduction video will give the background on FPD-Link III devices, such as the DS90UB953-Q1/ DS90UB954-Q1; the device's role within Advanced Driver Assist Systems (ADAS) in the automotive industry; and explain their broad appeal to engineers of all experience levels. This is fundamental to diving deeper into a 953/954 system, as well as, the links within the system.
DS90UB953/954 System Design & Operation: Typical Customer Issues
This section frames the design and operation video series by showing why it is important to contextualize customer problems in terms of the links between the devices.
Specifically, this section will discuss: issues with initializing the camera and issues with reading the incorrect serializer ID from the deserializer.
DS90UB953/954 System Design & Operation: Basic Design Rules
Understanding what hardware and software settings are important is critical to establishing a foundation for the 953/954 system. These settings can occur during or after power up and may need to be changed via software. As a result, these settings are routinely checked and verified before checking any of the other links in the system.
Specifically, this sections discusses: Diagnostics post power up, Mode and IDX Pins, Clocking Modes between the 953/954, Aliasing, I2C Pass Through, Port selection on 954, Analog Launch Pad (ALP), and Successful I2C Communication
DS90UB953/954 System Design & Operation: 953-954 Link Design
This section analyzes the link between the 953 and 954 and establishes how to identify the health and operation of the link. Since the link between the 953-954 is the most fundamental link used to communicate between devices, it is often checked first.
Specifically, this section discusses: Back Channel configuration, Built in Self Test (BIST), Adaptive Equalization (AEQ), and Channel Monitor Loop (CMLOUT)
DS90UB953/954 System Design & Operation: Sensor-953 Link Design
This is the Sensor and 953 Link Design section in DS90UB953/954 System Design & Operation video series. This video discusses how to use the sensor-953 link, as well as, the specific settings that are used with this link.
DS90UB953/954 System Design & Operation: 954-ISP/SoC Link Design
This section discusses what frame synchronization (FrameSync) is and how to configure in on the 953 and 954 and how CSI2 data is transferred across the link from the 954 to the ISP/SoC
Specifically, this section discusses: Frame Synchronization (FrameSync), Controlling 953 GPIOs locally and remotely via I2C, Unsynchronized and synchronized sensors, Internal and External Frame Sync, Port Forwarding, Accessing Indirect Registers, and Pattern Generation on 953 & 954
DS90UB953/954 System Design & Operation: Hardware Design
This section discusses how design a 953/954 using Power over Coax (PoC), and various hardware checks and concepts that need to be considered when analyzing a 953/954 system.
Specifically, this section discusses: Power Over Coax (PoC), AC Coupling Capacitors, PoC Inductors, Typical PoC Schematic, Critical Signal Routing, I2C Pullups, Loop Filter Capacitors on 953, Insertion Loss, Return Loss, and Time Domain Reflection (TDR) measurements.
mmWave Training Series
The mmWave training curriculum provides foundational content and hands on examples for you to learn the fundamentals of FMCW technology and mmWave sensors, and start development quickly. TI's portfolio of mmWave sensors features the AWR automotive radar sensor family and the IWR industrial mmWave sensor family, which are intended to be used for detecting range, velocity and angle of objects. Learn more about the silicon, tools, software and some of the applications for both mmWave families in the mmWave training series.
Introduction to mmWave sensing: FMCW radars
New to mm-wave sensing? This series of five short videos provides a concise yet in-depth introduction to sensing using FMCW radars.