Hint: separate multiple terms with commas

E.g., 12/13/2019

E.g., 12/13/2019

Hint: separate multiple terms with commas

E.g., 12/13/2019

E.g., 12/13/2019

Sort by:

1148 Results

AC Analog Input Module Architecture (AIM)

The third part of the session provides details on the need to focus on AC analog input module and its use cases in different types of protection relays, Different types of current sensors and the use cases for these sensors including key advantages and dis-advantages. Explains AC analog input module architecture including block diagram showing the critical products and EERD with different subsystems identified showing different approaches for designing an AC AIM.

Selection of Key Components (ADC, Signal Conditioning Amplifier) for AC Analog Input Module (AIM)

Fourth part of the session explains representation of Voltage or Current waveforms in Time and frequency domain and also looks at the customer use case for application of Time or frequency domain Analysis. The session also explains different sampling approaches like Simultaneous sampling, Coherent sampling, Oversampling to improve system performance, criteria for ADC selection and choice between SAR and Delta-Sigma ADCs. There is a list of TI products that can be considered during the design of the AIM and finally provides overview for Focus ADCs for this session.

Design Details for TI design TIDA-00834 High Accuracy Analog Front End Using 16-Bit SAR ADC with ±10V Measurement Range Reference Design

Fifth part of the session will focus on providing detailed information on TIDA-00834 TI design.  The initial slides cover Design Overview, Features, Key Components, test Setup, market differentiators, Block Diagram with links to relevant TI Designs, EVMs and TI product used in this design. Circuit representation and detailed description for ADC interface, Voltage and Current measurement and Power supply are provided. Graphs for Voltage and Current measurement accuracy are shown; along with collaterals and TI design links that can be referred by customers during design.

Challenges in today’s Body Control Module (BCM) design

This module discusses discrete implementation typically seen inside automotive body control module to monitor external switches. Common implementation methodology is reviewed in this section, and some of the challenges using discrete implementation is discussed in detail.

How MSDI helps solve system-level challenges in BCM design

In this section, the MSDI concept is introduced and how the MSDI helps solve system challenges is discussed in details

Advanced features of the MSDI

This module discusses some of the advanced features offered by the MSDI, and how a system designer can take advantage of these features to improve their system performance.

Using MSDI in the industrial space

This module discusses how the MSDI device can be used in an industrial data acquisition system in details.

Conclusion and More Information

This module concluds this traning session with highlights of the MSDI value propositions, as well as collaterals available to obtain more information about this MSDI device from Texas Instruments.

LC-sensing solution with TI FemtoFET and CC1350 Sensor Controller Engine

Introduction to mechanical water meters and EN ISO 4064

This section covers the basics of mechanical water meters and the principle of operation for impeller based water meters. There are multiple standards for water meters around the world; the EN ISO 4064 is relevant to all European countries and has been adopted under a different name in some other regions as well.

LC-sensing solution with TI FemtoFET and CC1350 Sensor Controller Engine

Inductive sensing with TI FemtoFET and CC1350 Wireless MCU

Water and heat meters share multiple system building blocks, such as the metrology sub-system and the application sub-systems, the Wireless communications part, the InfraRed optical port or the power solution. In this section, we will cover a new ultra-low cost single-chip LC-sensing solution utilizing the CC1350 Wireless MCU and its Sensor Controller Engine. Two external LC-tanks with a TI FemtoFET device each implement two rotation detection sensors, which measure the rotation of a half-metal/half-nonmetal disc, often used in mechanical water meters.

LC-sensing solution with TI FemtoFET and CC1350 Sensor Controller Engine

In-system tunable Multiband Sub-1GHz RF sub-system

Multiband Sub-1GHz RF sub-systems

LC-sensing solution with TI FemtoFET and CC1350 Sensor Controller Engine

Bidirectional InfraRed PHY communication with a single IR LED

Some EU standards like EN1434-3 for heat meters require optical interface as per EN62056-21, where two separate IR LEDs are used (one for receive and one for transmit direction). TIDA-01212 shows an alternative approach, which uses a single IR LED to implement a bi-directional IrDA PHY link with 9.6 kbps in half-duplex mode. The design approach can  the system reduce cost of any smart (sub-)metering device by replacing the legacy optical IrDA PHY modules with two separate LEDs.

LC-sensing solution with TI FemtoFET and CC1350 Sensor Controller Engine

7-segment LCD control thru SW and GPIOs

This module covers the “Innovative 7-Segment LCD Control Using GPIO Pins and SW” section of the “Single-chip Smart Water meter with Dual-band RF link and InfraRed port” training series.

DS90UB953/954 System Design & Operation: Overview

This introduction video will give the background on FPD-Link III devices, such as the DS90UB953-Q1/ DS90UB954-Q1; the device's role within Advanced Driver Assist Systems (ADAS) in the automotive industry; and explain their broad appeal to engineers of all experience levels. This is fundamental to diving deeper into a 953/954 system, as well as, the links within the system.

DS90UB953/954 System Design & Operation: Typical Customer Issues

This section frames the design and operation video series by showing why it is important to contextualize customer problems in terms of the links between the devices. 

Specifically, this section will discuss: issues with initializing the camera and issues with reading the incorrect serializer ID from the deserializer.

DS90UB953/954 System Design & Operation: Basic Design Rules

Understanding what hardware and software settings are important is critical to establishing a foundation for the 953/954 system. These settings can occur during or after power up and may need to be changed via software. As a result, these settings are routinely checked and verified before checking any of the other links in the system.

Specifically, this sections discusses: Diagnostics post power up, Mode and IDX Pins, Clocking Modes between the 953/954, Aliasing, I2C Pass Through, Port selection on 954, Analog Launch Pad (ALP), and Successful I2C Communication

DS90UB953/954 System Design & Operation: 953-954 Link Design

This section analyzes the link between the 953 and 954 and establishes how to identify the health and operation of the link. Since the link between the 953-954 is the most fundamental link used to communicate between devices, it is often checked first.

Specifically, this section discusses: Back Channel configuration, Built in Self Test (BIST), Adaptive Equalization (AEQ), and Channel Monitor Loop (CMLOUT)

DS90UB953/954 System Design & Operation: Sensor-953 Link Design

This is the Sensor and 953 Link Design section in DS90UB953/954 System Design & Operation video series. This video discusses how to use the sensor-953 link, as well as, the specific settings that are used with this link.

DS90UB953/954 System Design & Operation: 954-ISP/SoC Link Design

This section discusses what frame synchronization (FrameSync) is and how to configure in on the 953 and 954 and how CSI2 data is transferred across the link from the 954 to the ISP/SoC

Specifically, this section discusses: Frame Synchronization (FrameSync), Controlling 953 GPIOs locally and remotely via I2C, Unsynchronized and synchronized sensors, Internal and External Frame Sync, Port Forwarding, Accessing Indirect Registers, and Pattern Generation on 953 & 954

DS90UB953/954 System Design & Operation: Hardware Design

This section discusses how design a 953/954 using Power over Coax (PoC), and various hardware checks and concepts that need to be considered when analyzing a 953/954 system.

Specifically, this section discusses: Power Over Coax (PoC), AC Coupling Capacitors, PoC Inductors, Typical PoC Schematic, Critical Signal Routing, I2C Pullups, Loop Filter Capacitors on 953, Insertion Loss, Return Loss, and Time Domain Reflection (TDR) measurements.

1148 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki