Hint: separate multiple terms with commas

E.g., 12/08/2019

E.g., 12/08/2019

Hint: separate multiple terms with commas

E.g., 12/08/2019

E.g., 12/08/2019

Sort by:

1158 Results

Summary

In this section, a summary of the entire “How to design high-accuracy CT-based split-phase electricity meters using standalone metrology ADCs” training module would be covered.  Links will be provided for the reference designs that were discussed during this training series.

Current sensor and metrology architecture options

This section compares two types of current sensors used in electricity meters: current transformers and shunts.  In addition, it discusses three different architectures for sensing the voltage and current samples used to calculate the metrology parameters.  These architectures include a SoC-based architecture, AFE-based architecture, and ADC-based architecture.

Introduction to TIDA-010036 reference design

This section provide an overview of the TIDA-010036 reference design, which uses the ADS131M04 delta sigma standalone ADC for sensing the voltage and current necessary to calculate metrology parameters.  The TIDA-010036 design targets Class 0.5 single-phase two-wire meters with shunt current sensors and has a compact, magnetically immune cap-drop power supply to power the design from AC mains.

TIDA-010036 hardware design

This section provides an overview of the hardware used in the TIDA-010036 design, which includes the circuits used to translate the Mains voltage and current to the voltage waveform sensed by the ADS131M04.  In addition, it covers the TPS7A78-based cap-drop power supply used in this design.

Designing software for 1-phase electricity meters that use standalone ADCs

This section covers the initialization code and algorithms that can be used to calculate metrology parameters in a single-phase system using the sensed voltage and current samples.

ADS131M04 current detection mode for detecting neutral removal tampering

This section discusses current detection mode, which is a special low-power mode of the ADS131M04 standalone ADC, that can detect the presence of current when someone has tampered with a meter by removing its neutral connection.

Calibration and metrology accuracy results

This section discusses the procedure used to calibrate the TIDA-010037 design and the results obtained with this design.

Summary

In this section, a summary of the entire “How to design 1-phase shunt electricity meters using standalone metrology ADCs” training module would be covered.  Links will be provided for the reference designs that were discussed during this training series.

6.6kW Bi-directional OBC_Introduction and Overview

In this series of presentations, we go through the HEV/EV market status and history, OBC specifications, technology trend, topology selections and design considerations of an OBC system. Complete test results of a 6.6kW OBC reference design (Including AC-DC rectifier and isolated DC-DC converter) will be shown in the end of this paper to demonstrate the performance of our TIDesigns as well as TI SiC and embedded Technologies.

6.6kW Bi-directional OBC_CLLLC Resonant DAB Converter

In this series of presentations, we go through the HEV/EV market status and history, OBC specifications, technology trend, topology selections and design considerations of an OBC system. Complete test results of a 6.6kW OBC reference design (Including AC-DC rectifier and isolated DC-DC converter) will be shown in the end of this paper to demonstrate the performance of our TIDesigns as well as TI SiC and embedded Technologies.

Mastering the art of high voltage gate drivers

In this training series, we will touch the gate driver applications, fundamentals of low side gate driver, high- and low side gate driver and isolated gate driver. And we will surely go deep and help you understand the gate driver design considerations with TI reference design and the corresponding critical waveforms.

2019 Space Series

Explore design resources and products related to space applications.
buck-boost in wireless security cameras and video doorbells

Part 1: Introduction

In this video, you will learn how to build an entire power tree, significantly increase the battery operating time, and stabilize the supply voltage rails during sudden load changes such as turning on the camera or WiFi. You will also learn how you can use buck-boost converters to directly and efficiently drive high power white and IR LEDs for evening and night vision.
buck-boost in wireless security cameras and video doorbells

Part 2: Top buck-boost converter use cases

In this section, you will learn about the top buck-boost converter use cases and the reasons why buck-boost converters can help to build a more efficient, reliable, and simple system. 
buck-boost in wireless security cameras and video doorbells

Part 3: Li-ion battery discharge curves and estimate battery operating time gains with buck-boost

In this section, you will become familiar with lithium ion battery discharge curves and learn in which use cases a buck-boost converter will significantly increase battery operating time.

Detecting case tamper attacks using inductive switches

The first line of defense against tampering by bypassing current, reversing connections, and disconnecting leads is the meter case. Due to this, it is common for utilities to require some form of intrusion detection system to detect when someone opens a case.  In this section, we will cover how to detect someone trying to open the case of a meter.

Detecting magnetic tampering using hall-effect sensors

For anti-tampering, it is common to try to detect the presence of a strong magnet. In this section, we will cover the use of hall sensors for low-power detection of strong magnetic fields in three dimensions.  Details on our magnetic tamper detection reference design, TIDA-00839, will be provided as well as some of the design considerations that were kept in mind when creating this reference design.  

Hardening a meter against magnetic tamper attacks

In this section, we will cover how to harden a meter against these magnetic tamper attacks by using shunts for current sensors. For poly-phase implementations, I will go over how to use isolated delta sigma modulators to add the necessary isolation to use shunt current sensors and create magnetically immune poly-phase energy measurement systems. The TIDA-00601 and TIDA-01094 reference designs, which show how to implement a poly-phase isolated shunt measurement system, will be discussed as well as the associated AMC1304 high-side power supplies used in these designs.

Summary

In this section, a summary of the entire “Anti-tamper Techniques to Thwart Attacks on Smart Meters” training module would be covered.  This summary would cover the “Detecting case tamper attacks using inductive switches “, “Detecting magnetic tampering using hall-effect sensors “,  and “Hardening a meter against magnetic tamper attacks “ sections of the training series. Links will be provided for the reference designs and design tools that were discussed during this training series.

battery management systems on-demand technical training

Battery chargers: pick your application

Select the right charger specific for your application. Check our battery management solutions for various applications. 

1158 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki