Hint: separate multiple terms with commas

E.g., 12/07/2019

E.g., 12/07/2019

Hint: separate multiple terms with commas

E.g., 12/07/2019

E.g., 12/07/2019

Sort by:

264 Results

Calibration and metrology accuracy results

This section discusses the procedure used to calibrate the TIDA-010037 design and the results obtained with this design.


In this section, a summary of the entire “How to design 1-phase shunt electricity meters using standalone metrology ADCs” training module would be covered.  Links will be provided for the reference designs that were discussed during this training series.
South Asia Industrial Webinar

2018 South Asia Industrial Webinar Series

The topics will cover system design issue and solution for Building Automation, Power Delivery and Test & Measurement. TI experts introduce the latest technology and innovation system reference design. Discover ways to enhance the time-to-market and create safer and efficient industrial systems.

Reduce design risk for Low Earth Orbit satellites and other New Space applications

When: October 8, 2019 2:00 pm
What is NewSpace? What does it mean for satellite design? Explore products that meet quality & reliability requirements for short space flights and LEO designs.

Designing a modern power supply for RF sampling converters

When: October 28, 2019
Learn how to design a simpler signal chain that uses a PCB with a much smaller footprint.

Three-part JESD204B training series

This three-part training series introduces fundamentals and tips for leveraging the JESD204B serial interface standard, which provides board area, FPGA/ASIC pin-count and deterministic latency improvements over traditional LVDS and CMOS interfaces. TI’s JESD204B ADCs, DACs, clock ICs and development tools enable quick evaluation, design and implementation of designs utilizing the JESD204B interface. Learn more today through this on-demand series.

TI Precision Labs – ADCs

TI Precision Labs - ADCs

These on-demand courses and tutorials include introductory ideas about device architecture in addition to advanced, application-specific problem-solving, using both theory and practical knowledge.  Industry experts present each topic in order to help reduce design time and move quickly from proof-of-concept to productization. The ADC (analog-to-digital converter or A/D converter) curriculum is segmented into major topic learning categories, each of which contains short training videos, multiple choice quizzes, and short answer exercises.

High Accuracy AC Analog Input Module for Voltage & Current measurement using High Resolution Precision ADC for Protection Relay

Welcome to the world of power systems. This training session covers quick introduction to power systems and need for protection relay, protection relay modular architecture, AC analog input module (AIM), key specifications, time and frequency domain analysis, coherent, simultaneous and over sampling, selection of ADC and other key components and TI solutions. Design details for TI Design TIDA-00834 and links to TI designs customer can refer when designing AIM.

Webinar Series

Join our webinar series, as we explore different industry trends and technologies across our diverse product portfolio. Over the coming months, our experts will cover the latest analog, power management and embedded processing topics, across both automotive and industrial applications.

Precision Top

TI Precision Labs

TI Precision Labs (TIPL) is the most comprehensive online classroom for analog signal chain designers. From foundational knowledge to advanced concepts, our logical, sequenced and comprehensive teaching approach is both intuitive and practical. The training series, which includes videos and downloadable reference materials, will deepen the technical expertise of experienced engineers and accelerate the development of those early in their career.

TI Precision Labs – ADCs

Introduction to Analog-to-Digital Converters (ADCs)

These videos describe the key specifications listed in an analog-to-digital converter data sheet.

TI Precision Labs – ADCs

Error and Noise

These videos describe how to calculate error and noise of analog-to-digital converters (ADCs).

TI Precision Labs – ADCs

Analog-to-Digital Converter (ADC) Drive Topologies

These videos describe the different types front-end topologies that can be used to drive the input signal of an ADC.

TI Precision Labs – ADCs

AC Specifications

These videos describe how to analyze analog-to-digital converter (ADC) performance specifications that are measured using ac input signals, such as SNR, THD, SINAD, and SFDR.

TI Precision Labs – ADCs

SAR ADC Input Driver Design

These videos describe how to design the input driver circuitry for a successive approximation register analog-to-digital converter (SAR ADC).

TI Precision Labs – ADCs

Driving the Reference Input on a SAR ADC

The goal of this section is to cover reference specifications, gain a deeper understanding of the SAR voltage reference behavior, and develop methods for driving the reference input that minimize error.

TI Precision Labs – ADCs

Low-power SAR ADC System Design

These videos describe how to design a low-power data acquisition system using a successive approximation register analog-to-digital converter (SAR ADC).

TI Precision Labs – ADCs

Electrical Overstress on Data Converters

The goal of this series is to cover methods for protecting a system with an ADC with external components.  Furthermore, this series will look at understanding the impact that the protection components have on performance and minimizing this impact.
TI Precision Labs – ADCs

High-Speed Analog-to-Digital Converter (ADC) Fundamentals

These videos cover the fundamentals of high-speed data converters, including an overview of the architectures of both ADCs and digital-to-analog converters (DACs) and other details unique to high-speed devices.

Precision temperature measurement in heat and cold meters

PT100/500/1000 Resistance Temperature Detectors (RTDs) are widely used in grid infrastructure and factory automation applications where high precision temperature measurement is often required. Technical requirements include either 20 mK precise Differential Temperature Measurement (DTM) for heat and cold meters from 0 to 180°C or better than 400 mK precision over the full range of -200 to 850°C for industrial sensor transmitters.

264 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki