Filters in use:
Filters in use:
Filters in use:
Filters in use:
Filters in use:
Sort by:
7-segment LCD control thru SW and GPIOs
This module covers the “Innovative 7-Segment LCD Control Using GPIO Pins and SW” section of the “Single-chip Smart Water meter with Dual-band RF link and InfraRed port” training series.
Universal data concentrator supports Ethernet, 6LoWPAN RF mesh and more
IPv6-based communications are becoming the standard choice in industrial markets such as smart meters and grid automation. The universal data concentrator design provides a complete IPv6-based network solution integrated with Ethernet backbone communication, 6LoWPAN mesh networking and more. The 6LoWPAN mesh networking, which adopts an identical layering architecture to the WI-SUN FAN, addresses key concerns such as standards-based interoperability, reliability, security and long-distance connectivity.
Anti-tamper Techniques to Thwart Attacks on Smart Meters
Non-technical losses (“theft”) account for billions of dollars of revenue loss for utility providers around the world as individuals are able to hack meters to slow or stop the accumulation of energy usage statistics. This loss has driven increased requirements for enhancing the protection designed into new smart meters. This training session will discuss different methods of attacking smart meters and how TI’s analog portfolio can be used to detect or even prevent these attacks. In one scenario magnets are used to saturate any transformers present in the system.
Detecting case tamper attacks using inductive switches
The first line of defense against tampering by bypassing current, reversing connections, and disconnecting leads is the meter case. Due to this, it is common for utilities to require some form of intrusion detection system to detect when someone opens a case. In this section, we will cover how to detect someone trying to open the case of a meter.
Detecting magnetic tampering using hall-effect sensors
For anti-tampering, it is common to try to detect the presence of a strong magnet. In this section, we will cover the use of hall sensors for low-power detection of strong magnetic fields in three dimensions. Details on our magnetic tamper detection reference design, TIDA-00839, will be provided as well as some of the design considerations that were kept in mind when creating this reference design.
Hardening a meter against magnetic tamper attacks
In this section, we will cover how to harden a meter against these magnetic tamper attacks by using shunts for current sensors. For poly-phase implementations, I will go over how to use isolated delta sigma modulators to add the necessary isolation to use shunt current sensors and create magnetically immune poly-phase energy measurement systems. The TIDA-00601 and TIDA-01094 reference designs, which show how to implement a poly-phase isolated shunt measurement system, will be discussed as well as the associated AMC1304 high-side power supplies used in these designs.
Summary
In this section, a summary of the entire “Anti-tamper Techniques to Thwart Attacks on Smart Meters” training module would be covered. This summary would cover the “Detecting case tamper attacks using inductive switches “, “Detecting magnetic tampering using hall-effect sensors “, and “Hardening a meter against magnetic tamper attacks “ sections of the training series. Links will be provided for the reference designs and design tools that were discussed during this training series.
High Accuracy AC Analog Input Module for Voltage & Current measurement using High Resolution Precision ADC for Protection Relay
Welcome to the world of power systems. This training session covers quick introduction to power systems and need for protection relay, protection relay modular architecture, AC analog input module (AIM), key specifications, time and frequency domain analysis, coherent, simultaneous and over sampling, selection of ADC and other key components and TI solutions. Design details for TI Design TIDA-00834 and links to TI designs customer can refer when designing AIM.
Ultrasonic Sensing for More Accurate and Precise Water Flow Meters
Ultrasonic sensing techniques have been popular in smart water meters because the technology avoids any moving parts which are prone to degrade over the lifetime of the product. The MSP430FR6047 microcontroller (MCU) family takes ultrasonic sensing solutions to next level of performance delivering <25ps of accuracy, detection of low flow rates <1 liter/hour and high precision of <5ps.
Precision temperature measurement in heat and cold meters
PT100/500/1000 Resistance Temperature Detectors (RTDs) are widely used in grid infrastructure and factory automation applications where high precision temperature measurement is often required. Technical requirements include either 20 mK precise Differential Temperature Measurement (DTM) for heat and cold meters from 0 to 180°C or better than 400 mK precision over the full range of -200 to 850°C for industrial sensor transmitters.
Overview of temperature measurement in heat meters
Measuring RTD sensors with Delta-Sigma ADS1220 family
Differential Temperature Measurement sub-system reference design
Digital temperature sensor replacement of RTD sensors with TMP116
The TMP116 digital precision temperature sensor for the -55 to +125ºC range achieves higher accuracy than the Class AA PT sensor with a 1-point calibration. A small PCB including TI's TPD1E10B06 or TPD1E04U04 protection devices can be sealed into a RTD metal tube and meet the EN 61000-4-2 and -4-4 levels of ESD protection. The 64-bit internal EEPROM inside TMP116 stores user defined calibration data into the digital temperature sensor, simplifying integration with application MCUs, such as MSP430FR6047, FR6989 or CC13xx/26xx wireless MCU families.
Polyphase Current Measurement with Isolated Shunt Sensors
Shunt sensors are rapidly replacing current transformers as the preferred current sensing solution for electricity meters(e-meters) around the world.
Introduction
This section covers what is meter tampering and why is this a problem for utility providers. It also covers the advantages of shunt current sensors. In addition, it introduces the isolated modulator and isolated metrology AFE architectures for adding isolation to shunts.
High-Side power supply options for powering shunt sensing devices
For both isolated modulator and isolated metrology AFE architectures, high-side power supplies are needed for each phase. In this section, the different high-side power supply options that are available are discussed, which include cap-drop power supplies, isolated DC/DC power supplies with external transformers, as well as isolated DC/DC power supplies with transformers integrated.
Implementing isolated shunt sensors using metrology AFEs and external isolators
In this section, the isolated metrology AFE architecture will be discussed. The software and hardware design considerations for this architecture will be discussed. In addition, the TIDA-01550 isolated metrology AFE reference design will also be discussed.
Implementing isolated shunt sensors using isolated delta sigma modulators and digital filters
In this section, the isolated modulator architecture will be discussed. The software and hardware design considerations for this architecture will be discussed. In addition, various isolated modulator designs will also be discussed and compared.
Comparisons between isolated shunt sensing architectures
Both isolated modulator and isolated metrology AFE architectures have their advantages with respect to each other. Depending on system requirements, one architecture may be more feasible than the other. This section compares the two isolated shunt sensing architectures and discusses which architecture is best for different system requirements.