Hint: separate multiple terms with commas

E.g., 02/19/2020

E.g., 02/19/2020

Hint: separate multiple terms with commas

E.g., 02/19/2020

E.g., 02/19/2020

Sort by:

195 Results

Hardening a meter against magnetic tamper attacks

In this section, we will cover how to harden a meter against these magnetic tamper attacks by using shunts for current sensors. For poly-phase implementations, I will go over how to use isolated delta sigma modulators to add the necessary isolation to use shunt current sensors and create magnetically immune poly-phase energy measurement systems. The TIDA-00601 and TIDA-01094 reference designs, which show how to implement a poly-phase isolated shunt measurement system, will be discussed as well as the associated AMC1304 high-side power supplies used in these designs.

Ultrasonic water meters have improved accuracy and precision to detect the smallest leaks to reduce water waste.

Ultrasonic Sensing for More Accurate and Precise Water Flow Meters

Ultrasonic sensing techniques have been popular in smart water meters because the technology avoids any moving parts which are prone to degrade over the lifetime of the product. The MSP430FR6047 microcontroller (MCU) family takes ultrasonic sensing solutions to next level of performance delivering <25ps of accuracy, detection of low flow rates <1 liter/hour and high precision of <5ps.

Precision temperature measurement in heat and cold meters

PT100/500/1000 Resistance Temperature Detectors (RTDs) are widely used in grid infrastructure and factory automation applications where high precision temperature measurement is often required. Technical requirements include either 20 mK precise Differential Temperature Measurement (DTM) for heat and cold meters from 0 to 180°C or better than 400 mK precision over the full range of -200 to 850°C for industrial sensor transmitters.

Overview of temperature measurement in heat meters

This section introduces the heat and cold meter training series. The series covers the basics of RTD sensors and their usage in heat and cold meters, as defined in the EN1434 set of standards.

Measuring RTD sensors with Delta-Sigma ADS1220 family

ADS1220 Delta-Sigma family uses the ratiometric approach for measuring RTD sensors with the built-in current excitation source. Offset and gain calibration are required before the resistance measurement is converted into a temperature reading by the application MCU.

Differential Temperature Measurement sub-system reference design

TIDA-01526 implements a high-precision Differential Temperature Measurement (DTM) subsystem using a 24-bit, low-power, Delta-Sigma ADC. Heat and cold meter DTM subsystems typically use two 2- or 4-wire RTDs such as PT100, PT500 or PT1000 and can achieve measurement accuracy of 20 mK over a water temperature range of 3°C to 180°C. The MSP430FR6047 application MCU converts the resistance value into a temperature reading in TIDA-01526.

Digital temperature sensor replacement of RTD sensors with TMP116

The TMP116 digital precision temperature sensor for the -55 to +125ºC range achieves higher accuracy than the Class AA PT sensor with a 1-point calibration. A small PCB including TI's TPD1E10B06 or TPD1E04U04 protection devices can be sealed into a RTD metal tube and meet the EN 61000-4-2 and -4-4 levels of ESD protection. The 64-bit internal EEPROM inside TMP116 stores user defined calibration data into the digital temperature sensor, simplifying integration with application MCUs, such as MSP430FR6047, FR6989 or CC13xx/26xx wireless MCU families.

Polyphase Current Measurement with Isolated Shunt Sensors

Shunt sensors are rapidly replacing current transformers as the preferred current sensing solution for electricity meters(e-meters) around the world.


This section covers what is meter tampering and why is this a problem for utility providers.  It also covers the advantages of shunt current sensors.  In addition, it introduces the isolated modulator and isolated metrology AFE architectures for adding isolation to shunts.

High-Side power supply options for powering shunt sensing devices

For both isolated modulator and isolated metrology AFE architectures, high-side power supplies are needed for each phase.  In this section, the different high-side power supply options that are available are discussed, which include cap-drop power supplies, isolated DC/DC power supplies with external transformers, as well as isolated DC/DC power supplies with transformers integrated. 

Implementing isolated shunt sensors using metrology AFEs and external isolators

In this section, the isolated metrology AFE architecture will be discussed.   The software and hardware design considerations for this architecture will be discussed.  In addition, the TIDA-01550 isolated metrology AFE reference design will also be discussed.

Implementing isolated shunt sensors using isolated delta sigma modulators and digital filters

In this section, the isolated modulator architecture will be discussed.  The software and hardware design considerations for this architecture will be discussed.  In addition, various isolated modulator designs will also be discussed and compared.

Comparisons between isolated shunt sensing architectures

Both isolated modulator and isolated metrology AFE architectures have their advantages with respect to each other.  Depending on system requirements, one architecture may be more feasible than the other.  This section compares the two isolated shunt sensing architectures and discusses which architecture is best for different system requirements.


In this section, a summary of the entire “Polyphase Current Measurement with Isolated Shunt Sensors” training module would be covered.  Links will be provided for the reference designs that were discussed during this training series.

Interfacing multiple analog-to-digital converters on a Sitara™ processor

In this training series, we demonstrate how to use the PRU-ICSS subsystem on a Sitara processor to interface between multiple SAR ADCs using SPI.

RF Mesh Networking Offers System Performance and Interoperability

IPv6-based communications networks are becoming the standard choice in industrial markets such as smart meters and grid automation. These 6LoWPAN-based mesh networks address key concerns such as vendor interoperability, long-distance connectivity, security and reliability. This training will cover system- and software-level deep-dives on new RF 6LoWPAN mesh solutions, which implement open-source based 6LoWPAN mesh stacks on top of the frequency hopping based TI-15.4 stack.

Battery and system monitoring for smart meters

Over the last few years, the industry has been moving from mechanical to fully electronic meters. We have seen more and more functionalities such as metrology with ultrasonic technology, leak detection with audio patterns, communication with low power and long range radio being added to smart meters. These new functionalities allow utilities to deliver new services such as condition-based maintenance and remote monitoring of meters, which lead to efficient management of the network and better customer experience.

Anti-tamper Techniques to Thwart Attacks on Smart Meters--Introduction: What is Meter Tampering and Why do Utility Companies Care about it

April 12, 2017

This module covers what is meter tampering and why is this a problem for utility providers.

Anti-tamper Techniques to Thwart Attacks on Smart Meters--Introduction: Common Meter Tampering Techniques

April 12, 2017

This module covers common meter tampering techniques.

Anti-tamper Techniques to Thwart Attacks on Smart Meters— Detecting magnetic tampering using hall-effect sensors: TIDA-00839 Magnetic Tamper Detection Reference Design Features

April 12, 2017

This module covers how to the use hall sensors, such as the DRV5033, for the low-power detection of strong magnetic fields in three dimensions.
195 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki