Hint: separate multiple terms with commas

E.g., 12/09/2019

E.g., 12/09/2019

Hint: separate multiple terms with commas

E.g., 12/09/2019

E.g., 12/09/2019

Sort by:

33 Results
Rapid prototyping training series

Rapid prototyping: Getting started with TI solutions

How many times have you said, “I would like to prototype an idea with TI silicon but I can not get software resources" or “I don’t know how to prototype/program.”

This training shows you how to get started prototyping on TI solutions with minimal or no programming, including the following tasks:

Rapid prototyping fundamentals training series

Rapid prototyping fundamental functions

These videos provide understanding of the fundamental functions used for rapid prototyping on TI solutions with minimal or no programming, including the following:

  • Implementing necessary prototyping functions such clocks/GPIO, Read A/D, I2C/SMBus, etc.
  • Seamless interface of various analog EVMs for customer “proof of concept”
  • Standalone UI – Button, (GP Input - GPIO), LCD Display (“Hello”), Music, Serial Interface (Putty, Echo)
TI Precision Labs - Sensors

TI Precision Labs - Sensors

TI Precision Labs (TIPL) is the most comprehensive online classroom for analog signal chain engineers. The on-demand courses and tutorials include introductory ideas about device architecture, in addition to advanced, application-specific problem-solving, using both theory and practical knowledge. 

In the TI Precision Labs - Sensors series, our experts will teach you about temperature and magnetic sensors to help you reduce design time and move quickly from proof-of-concept to productization.

Introduction

This section covers what is meter tampering, why is this a problem for utility providers, and some common ways a meter is tampered.

TI Precision Labs – Magnetic Sensors

TI Precision Labs - Magnetic Sensors: Introduction

These introduction videos give the background on magnetic concepts and Hall Effect ICs for engineers of all experience levels. The second video introduces the magnetic field calculator Texas Instruments created to aid in design challenges.

TI Precision Labs – Magnetic Sensors

TI Precision Labs - Magnetic Sensors: Key Specifications

Understanding the key specifications of Hall sensors will aid in ensuring the proper device is selected for a given application. The series of videos in this section will give a thorough explanation of the tradeoffs in bandwidth versus power, the importance of the operate and release point in Hall Effect switches and latches and the key parameters for linear Hall Effect sensors.

TI Precision Labs – Magnetic Sensors

TI Precision Labs - Magnetic Sensors: Applications

There are a variety of applications for Hall Effect sensors, each with its own unique system requirement. The series of videos in this section will walk through some of the top Hall applications such as rotary encoding and proximity sensing.

TI Precision Labs – Magnetic Sensors

TI Precision Labs - Magnetic Sensors: Calculating Magnetic Fields

When designing Hall applications, understanding the behavior of magnetic fields is crucial. The series of videos in this section will discuss how magnetic fields vary with temperature and axis of rotation.

Detecting case tamper attacks using inductive switches

The first line of defense against tampering by bypassing current, reversing connections, and disconnecting leads is the meter case. Due to this, it is common for utilities to require some form of intrusion detection system to detect when someone opens a case.  In this section, we will cover how to detect someone trying to open the case of a meter.

Detecting magnetic tampering using hall-effect sensors

For anti-tampering, it is common to try to detect the presence of a strong magnet. In this section, we will cover the use of hall sensors for low-power detection of strong magnetic fields in three dimensions.  Details on our magnetic tamper detection reference design, TIDA-00839, will be provided as well as some of the design considerations that were kept in mind when creating this reference design.  

Hardening a meter against magnetic tamper attacks

In this section, we will cover how to harden a meter against these magnetic tamper attacks by using shunts for current sensors. For poly-phase implementations, I will go over how to use isolated delta sigma modulators to add the necessary isolation to use shunt current sensors and create magnetically immune poly-phase energy measurement systems. The TIDA-00601 and TIDA-01094 reference designs, which show how to implement a poly-phase isolated shunt measurement system, will be discussed as well as the associated AMC1304 high-side power supplies used in these designs.

Summary

In this section, a summary of the entire “Anti-tamper Techniques to Thwart Attacks on Smart Meters” training module would be covered.  This summary would cover the “Detecting case tamper attacks using inductive switches “, “Detecting magnetic tampering using hall-effect sensors “,  and “Hardening a meter against magnetic tamper attacks “ sections of the training series. Links will be provided for the reference designs and design tools that were discussed during this training series.

Rapid prototyping functions: analog EVM and BoosterPacks

Rapid prototyping function based on analog EVMs & BoosterPacks

Date:
September 28, 2019

Duration:
03:19
This module expands upon step-by-step functionality with the capability of connecting to various analog EVMs/BoosterPacks.
Small Hall Effect Latch inIndustrial Applications

Small Hall Effect Latch in Industrial Applications

Date:
August 1, 2019

Duration:
03:56
This video shows various end products that make use of a small Hall-effect latch, discusses the features/benefits of the DRV5011, and shows the WCSP package.

Innovations in Current and Magnetic Sensing

Date:
May 31, 2019

Duration:
23:00
Learn about TI's offering of Current & Magnetic Sensing Products
TI Precision Labs - Sensors

TI Precision Labs - Sensors

Date:
May 30, 2019
TI Precision Labs is the electronics industry’s first comprehensive online classroom for analog engineers.

Hall Position Sensor Applications Overview

Date:
May 22, 2019

Duration:
17:37
This video introduces you to the latest and innovative Hall-effect position sensing solutions from Texas Instruments.
TI Precision Labs – Magnetic Sensors

TI Precision Labs - Magnetic Sensors

TI Precision Labs is the electronics industry’s most comprehensive online classroom for analog engineers. The on-demand courses and tutorials include introductory ideas about device architecture in addition to advanced, application-specific problem-solving, using both theory and practical knowledge. Use these hands-on courses to predict circuit performance and move seamlessly from abstract concepts to specific formula in an easy-to-follow format. Industry experts present each topic in order to help reduce design time and move quickly from proof-of-concept to productization.

TI Precision Labs – Magnetic Sensors: How a Permanent Magnet’s Magnetic Field Changes with Temperature

TI Precision Labs - Magnetic Sensors: How a Permanent Magnet’s Magnetic Field Changes with Temperature

Date:
May 5, 2019

Duration:
03:42
This video will discuss how magnetic field changes with temperature.
TI Precision Labs – Magnetic Sensors: Off-Axis Magnetic Field Angle Calculation

TI Precision Labs - Magnetic Sensors: Off-Axis Magnetic Field Angle Calculation

Date:
May 5, 2019

Duration:
02:45
This video will discuss the effects of a magnet rotating off-axis.
33 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki