Hint: separate multiple terms with commas

E.g., 04/03/2020

E.g., 04/03/2020

Hint: separate multiple terms with commas

E.g., 04/03/2020

E.g., 04/03/2020

Sort by:

156 Results

TI Precision Labs - Op Amps: Introduction

What is this training series about? Is it right for me?

These introduction videos give the background on the TI Precision Labs and explain their broad appeal to engineers of all experience levels. The second video introduces the National Instruments VirtualBench which is recommended for use in the hands-on labs accompanying the training modules.

TI Precision Labs - Op Amps: Input Offset Voltage and Input Bias Current

How well do you know the major contributors to DC op amp input errors?

TI Precision Labs - Op Amps: Input and Output Limitations

Have you ever experienced unexpected signal output behavior of an op amp, such as clipping or other non-linear behavior?

The cause of this may be either input common mode voltage limitations or output voltage swing restrictions.  Understanding data sheet specifications in the context of real world circuits will help you avoid experiencing this problem.  An inside look at an op amp's input and output stages on different process technologies provides additional insight.

TI Precision Labs - Op Amps: Power and Temperature

How hot is too hot? Does my circuit need a heat sink?

This series discusses the relationship between power dissipation and temperature in op amps and shows how to calculate an amplifier's junction temperature under a variety of operating conditions using its thermal model. Absolute maximum ratings and internal thermal protection schemes are also introduced.

TI Precision Labs - Op Amps: Bandwidth

Did you know when calculating op amp bandwith you should always use the non-inverting gain?  Do you know why bandwidth impacts Iq?

In addition to answering those questions, we will show you nearly everything you ever wanted to know about op amp bandwidth including:

TI Precision Labs - Op Amps: Slew Rate

True or False? A large and rapid voltage change in an op amp's output is always limited by the slew rate of the device.

If you think the answer is true, or you have seen output slew behavior you could not explain, this session is for you!  We will provide an explanation of large and small signal analysis, slew boost, slew rate over temperature, slew rate vs. full power bandwidth, and the relationship of Vos and slew rate.  In addition, an inside the op amp view of the cause of slew rate limit is presented.

TI Precision Labs - Op Amps: Common Mode Rejection and Power Supply Rejection

Rejection can be a good thing, especially in the case of common mode or power supply voltage errors. 

This video series discusses how changing the common mode voltage or power supply voltage on an op amp can introduce errors at both AC and DC, and how those errors are mitigated by the op amp's built-in common mode rejection and power supply rejection.

TI Precision Labs - Op Amps: Noise

Did you know that a standard resistor component sitting upon your desk doing "nothing" is actually generating noise?

TI Precision Labs - Op Amps: Low Distortion Design

Distortion - a linear circuit's worst enemy. Where does it come from and how can it be reduced?

This video series introduces the sources of distortion in amplifier circuits, both internal to the amplifier and from external components. Design practices which minimize distortion are also given.

TI Precision Labs - Op Amps: Stability

Did the circuit you designed to create a precision DC output end up as an oscillator?

After viewing this series, you should have all of the tools and information to prevent this from happening again!  This session covers basic stability theory, applies it to SPICE  simulations, and then real-world lab experiments.  You will learn the common causes of op amp stability issues as well as common stability compensation techniques and their associated tradeoffs.

TI Precision Labs - Op Amps: Electrical Overstress (EOS)

Oops, what's that smell:  why did the "smoke test" fail?

This series covers the causes of electrical overstress and introduces several methods that can be used to improve and test circuit robustness against electrical overstress.  All of the examples in this series show op-amp circuits, but the methods used could be applied to other components as well.

TI Precision Labs - Op Amps: Board Level Troubleshooting

My application circuit doesn't work! What should I do now?

This video series gives recommendations for best practice application debugging techniques. Various engineering checks are outlined to help determine the root cause of an issue.

For more detailed amplifier troubleshooting videos, check out the Linear Amplifier Troubleshooting Training Series.

TI Precision Labs - Op Amps: ESD

ZAP! Is your circuit protected against the thousands of volts which could be on your finger tips?

This series explains how electrostatic discharge, or ESD, can damage semiconductor components and what kind of internal protection circuitry is present in these devices.

TI Precision Labs - Op Amps: Current-Feedback Amplifiers

What is a current-feedback amplifier, and when is it the best choice for your system design?

In this two-part series, you will learn the main advantages of current-feedback amplifiers, namely:

Troubleshooting amplifier high speed amplifiers oscillation oscillations integrated circuit PCB printed circuit board application linear AMP output voltage datasheet verification failure analysis debugging debug submission FA customer return

Troubleshooting Tips: Op Amps - Oscillations

Date:
December 11, 2019

Duration:
04:28
In this training we demonstrate how to check for signs of oscillations of an amplifier.

High Accuracy AC Analog Input Module for Voltage & Current measurement using High Resolution Precision ADC for Protection Relay

Welcome to the world of power systems. This training session covers quick introduction to power systems and need for protection relay, protection relay modular architecture, AC analog input module (AIM), key specifications, time and frequency domain analysis, coherent, simultaneous and over sampling, selection of ADC and other key components and TI solutions. Design details for TI Design TIDA-00834 and links to TI designs customer can refer when designing AIM.

How to convert a TINA-TI model into a generic spice model

How to convert a TINA-TI model into a generic spice model

Date:
October 26, 2017

Duration:
03:05
In this short tutorial, you'll learn how to convert a TINA-TI model into a generic spice model that is compatible with other simulators.

High Speed Transimpedence Amplifier Design Flow

Date:
June 16, 2016

Duration:
25:31
The presentation will cover the theoretical design concepts. The theory will be applied to demonstrate the various degrees of freedom available
How to Design Transimpedance Amplifier Circuits

How to Design Transimpedance Amplifier Circuits

Date:
March 14, 2018

Duration:
04:17
This video discusses how to design transimpedance amplifier circuits, which convert an input current to an output voltage.
Troubleshooting amplifier amplifiers VOS input offset integrated circuit PCB printed circuit board application linear AMP offset output voltage datasheet verification failure analysis debugging debug submission FA customer return

Troubleshooting Tips: Op Amps - Offset Voltage

Date:
May 30, 2019

Duration:
04:31
In this training we demonstrate how to verify the input offset voltage of an amplifier using the TI product datasheet test conditions.
156 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki