Hint: separate multiple terms with commas

E.g., 10/19/2019

E.g., 10/19/2019

Hint: separate multiple terms with commas

E.g., 10/19/2019

E.g., 10/19/2019

Sort by:

1143 Results

Summary

In this section, a summary of the entire “Securing Smart Meters from Attack with TI Analog” training module would be covered.  This summary would cover the “Detecting case tamper attacks using inductive switches “, “Detecting magnetic tampering using hall-effect sensors “,  and “Hardening a meter against magnetic tamper attacks “ sections of the training series. Links will be provided for the reference designs and design tools that were discussed during this training series.

Motor Drives in Appliances: Why Transforming from High Voltage to Low Voltage?

Learn the opportunities of motor drives in appliances and understand why there is clear transformation happening from high voltage to low voltage motor drives

Brushed DC and Stepper Motor Drives: Architectures, Challenges and Solutions

Learn the different power stage architectures and topologies for low voltage brushed DC and stepper motor drives and understand typical system design challenges and differentiated solutions from Texas Instruments.

Brushless DC Motor Drives: Architectures, Challenges and Solutions

Learn the different power stage architectures and topologies for low voltage brushless DC motor drives and understand typical design challenges and differentiated solutions with integrated motor drivers.

How to Design a Robust, Reliable and Efficient Power Stage for Brushless DC Motor?

Learn about the design challenges for the power stage in a low voltage BLDC motor drive and understand the system solutions enabling high efficient, robust and reliable system.  Also learn about different power supply solutions for low voltage motor control.

Automotive front end power stage

Automotive transients introduction

This video presents a short overview of automotive frond-end and the transients tackled by the frond-end power conversion stage connected to an automotive battery rail.

Automotive front end power stage

Automotive transients explained

This section presents a high level overview of automotive board net and the describes the conditions that the the tests simulate. These include:

  • Reverse polarity
  • Jump start
  • Load sump
  • Starting profile
  • Superimposed ac
Automotive front end power stage

Architecting the dc-dc stage for automotive transients

This section presents an approach to architecting the dc-dc conversion stage to handle the transients on automotive battery rail. Following topologies are covered:

  • Buck-boost
  • Always-on boost + buck
  • On-demand boost + buck
  • Buck + post boost

Pro/cons of the different approaches are also discussed.

Automotive front end power stage

Reverse battery protection

This section presents the different methods of protecting the electronic loads connected to the automotive battery rail in the event of accidental reverse battery connection. The methods covered include:

  • Schottky diode
  • PFET + discretes
  • Smart diode + NFET
Automotive front end power stage

Riding out automotive transients using buck-boost dc-dc stage

This section presents the buck-boost dc-dc converter as an effective and efficient solution for the wide vin automotive battery rail. The advantages compared to pre-boost and two stage solutions are presented. Also contains an overview of buck-boost converter and controller offerings convering various current and power levels.

Gate Driver Applications and System Architecture

The first section will discuss the applications where the different kinds of gate driver will be used, and we will also identify the gate drivers location used in each typical system architecture.

Introducing Popular Power Semiconductors

This training video will be introducing Popular Power Semiconductors - Si-MOSFETs, IGBTs, SiC-MOSFETs and GaN, and identify the differences among this devices in the perspective the gate driver design and select consideration.

Low Side and H-Bridge Gate Driver Fundamentals

This training video illustrates the operation fundamentals for the low side and half-bridge gate driver.

Gate Driver Select Considerations and Key Specs

This training video discusses the gate driver select considerations and key specifications, and also introduces the novel gate driver specs for high end gate driver.

Why Isolation in Power Electronics System?

This training series will firstly discuss the isolation requirement in power electronics system, and then compare the different driver isolation implementation methodologies. Integrated isolated gate driver shows the best performance in the perspective of size, performance and reliability.

TI’s Reinforced Capacitive Isolation

This training video will firstly introduce the configuration of TI's capacitive isolation technology, and compare over other methods, like opto-coupler, transformative. Another important benefit - "fail open" of TI's capacitor isolation, will also be discussed.

What is UCC2x52x?

This training video will firstly discuss the configuration of the UCC2x52x gate driver and it featured benefits, then a detailed bench experiment comparison shows that UCC2x52x family gate drivers has better dynamic performance as well as stable and predictable source/sink peak current. 

UCC21520 – Turn-Off with Negative Voltage

This training video will help to understand the UCC2152x's output configuration and grounding consideration when driving FETs and IGBTs with negative voltage bias. Three different implementation methods are introduced, pros and cons of each methods are illustrated.

Gate Driver Design Deep Dive

Gate driver design deep dive outline:

-Parasitics in gate driver-Gate driver soft/hard switching difference-Strong gate driver and MOSFET nonlinear COSS-Common mode transient immunity(CMTI), dV/dt and di/dt through parasitics L, and C?-How to separate power ground noise by PCB layout?-Power supply for isolated gate driver in UPS, server and Telecom system-TIDA and Experimental waveforms

Parasics and its Influences at Hard-Switching

In this training video, parasitics in the gate driver system is identified. Piece-wise linear switching sequence at turn on/off is illustrated. Reverse recovery introduced additional complexity on turn-on transition is explained with comparison of MOSFETs and IGBTs.

1143 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki