Hint: separate multiple terms with commas

E.g., 10/23/2019

E.g., 10/23/2019

Hint: separate multiple terms with commas

E.g., 10/23/2019

E.g., 10/23/2019

Sort by:

207 Results
LC-sensing solution with TI FemtoFET and CC1350 Sensor Controller Engine

7-segment LCD control thru SW and GPIOs

This module covers the “Innovative 7-Segment LCD Control Using GPIO Pins and SW” section of the “Single-chip Smart Water meter with Dual-band RF link and InfraRed port” training series.

Overview of temperature measurement in heat meters

This section introduces the heat and cold meter training series. The series covers the basics of RTD sensors and their usage in heat and cold meters, as defined in the EN1434 set of standards.

Measuring RTD sensors with Delta-Sigma ADS1220 family

ADS1220 Delta-Sigma family uses the ratiometric approach for measuring RTD sensors with the built-in current excitation source. Offset and gain calibration are required before the resistance measurement is converted into a temperature reading by the application MCU.

Differential Temperature Measurement sub-system reference design

TIDA-01526 implements a high-precision Differential Temperature Measurement (DTM) subsystem using a 24-bit, low-power, Delta-Sigma ADC. Heat and cold meter DTM subsystems typically use two 2- or 4-wire RTDs such as PT100, PT500 or PT1000 and can achieve measurement accuracy of 20 mK over a water temperature range of 3°C to 180°C. The MSP430FR6047 application MCU converts the resistance value into a temperature reading in TIDA-01526.

Digital temperature sensor replacement of RTD sensors with TMP116

The TMP116 digital precision temperature sensor for the -55 to +125ºC range achieves higher accuracy than the Class AA PT sensor with a 1-point calibration. A small PCB including TI's TPD1E10B06 or TPD1E04U04 protection devices can be sealed into a RTD metal tube and meet the EN 61000-4-2 and -4-4 levels of ESD protection. The 64-bit internal EEPROM inside TMP116 stores user defined calibration data into the digital temperature sensor, simplifying integration with application MCUs, such as MSP430FR6047, FR6989 or CC13xx/26xx wireless MCU families.

Introduction

This section covers what is meter tampering and why is this a problem for utility providers.  It also covers the advantages of shunt current sensors.  In addition, it introduces the isolated modulator and isolated metrology AFE architectures for adding isolation to shunts.

High-Side power supply options for powering shunt sensing devices

For both isolated modulator and isolated metrology AFE architectures, high-side power supplies are needed for each phase.  In this section, the different high-side power supply options that are available are discussed, which include cap-drop power supplies, isolated DC/DC power supplies with external transformers, as well as isolated DC/DC power supplies with transformers integrated. 

Implementing isolated shunt sensors using metrology AFEs and external isolators

In this section, the isolated metrology AFE architecture will be discussed.   The software and hardware design considerations for this architecture will be discussed.  In addition, the TIDA-01550 isolated metrology AFE reference design will also be discussed.

Implementing isolated shunt sensors using isolated delta sigma modulators and digital filters

In this section, the isolated modulator architecture will be discussed.  The software and hardware design considerations for this architecture will be discussed.  In addition, various isolated modulator designs will also be discussed and compared.

Comparisons between isolated shunt sensing architectures

Both isolated modulator and isolated metrology AFE architectures have their advantages with respect to each other.  Depending on system requirements, one architecture may be more feasible than the other.  This section compares the two isolated shunt sensing architectures and discusses which architecture is best for different system requirements.

Summary

In this section, a summary of the entire “Polyphase Current Measurement with Isolated Shunt Sensors” training module would be covered.  Links will be provided for the reference designs that were discussed during this training series.

Overview: RF Mesh Networking Offers System Performance and Interoperability

We will discuss the training summary, the target end-equipment, the design motivation and system overview.

Simple 6LoWPAN Mesh Data Collector Improves Network Performance Reference Design

This session will review the system-level and software-level details of the 6LoWPAN mesh data collector reference design, TIDA-01547.

Simple 6LoWPAN Mesh End Node Improves Network Performance Reference Design

In this session, we will introduce a new reference design, TIDA-010003 that implements a low-cost 6LoWPAN mesh end-node design.

Experimental results: Impact of out-of-network interference on the system performance

This session will cover overall test set-up and experimental results to show the impact of out-of-network interference on system performance.

Experimental results: Impact of in-network interference on system performance, co-existence performance and more

This session will cover experimental results to show noise immunity, co-existence performance and software reliability.

Experimental results: Impact of out-of-network interference on the system performance with the end-node design (TIDA-010003)

This session will review experimental results with TIDA-010003 to confirm the same performance of this design as the TIDA-01547.

6LoWPAN RF mesh demo and summary

This session will show a 6LoWPAN mesh demo and then conclude our discussion with summary.
207 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki