Sort by:

86 Results
Low noise DC/DC

You CAN have both - low noise AND high efficiency

For noise-critical portable applications, such as GPS receivers, connectivity, and sensing, power supply designers always had to choose between longer battery run time (from higher efficiency) or higher signal chain performance (from the increased sensor sensitivity possible with a quieter power supply). For line-powered industrial or communications equipment applications, designers have been forced to dissipate significant amounts of power in LDOs to achieve the desired noise performance. Achieving both low noise and high efficiency was impossible.

Wide Input DC-DC Converters Servicing Low Quiescent Current Needs in Industrial Applications

Battery life cycle is a key for high-cell-count battery pack-based end-equipment. Low quiescent current (Iq) consumption of DC-DC converters is a major feature that helps achieve longer battery life cycles. TI’s latest buck converters boast low Iq consumption as they maintain high efficiency in the active mode (heavy loads) as well as extend battery life during standby modes. This training will cover an overview of battery powered industrial applications and the specific power consumption requirements for these end equipments.

Low noise DC/DC

Why place an LDO after a DC/DC?

Understand the performance and tradeoffs of the traditional low noise and high efficiency approach of using a DC/DC followed by an LDO.  Visualize other systems that could use the same approach, with the appropriate DC/DCs and LDOs in different packages and with different features.

What low quiescent current means for your application

You've heard of low quiescent current, or low Iq, but what does it mean for your design? In this training, learn how low quiescent current impacts your power supply performance, along with the benefits of alower quiescent current DC/DC switching converter

WEBENCH(R) Power Designer: Simulation Overview

This video describes the third step of the WEBENCH process--running electrical simulations of your customized designs.

WEBENCH(R) Power Designer: Export Overview

This video describes the final step of the WEBENCH process--exporting your completed design files to your CAD tool, PDF or a sharing platform.

WEBENCH Power Designer: Step by Step

WEBENCH Power Designer makes end-to-end power supply design fast and intuitive. This video series describes each step of the WEBENCH process: Device selection, customization, simulation, and exporting designs to the next environment. 

Troubleshooting Bucks Training Series

This series of videos will discuss common issues and debug tips and tricks for buck converters and controllers.

Transient Response

This section will compare the transient response of the 3 solutions.

Topology Comparison

This section will compare the 2 different topologies chosen for this comparison

Thermals

This section will compare the thermal images and results for the 3 solutions tested.

Testing in the Lab

In testing in the lab, Carmen takes a six phase buck regulator through basic validation testing in the lab with plenty of tips and waveforms shared. Let Carmen show you how to test transient response, input and output ripple, phase stability, and thermal performance. Additionally, TI engineers blog about various lab tricks related to multiphase devices.

Blogs

Switching Power Supply Component Selection

This 7-part series discusses tips and best practices for selecting the appropriate components for your switching power supply.

Switching Frequency Considerations

This section will cover issue to consider when choosing your switching frequency

Summary

Summary of the testing results

Solutions Size Comparison

This section will compare the size of the solution for the 3 different designs.

Solution Comparison

This section will compare the schematics and components chosen for the 3 solutions used in this comparis

Series Capacitor Selection

This section will cover the selection of the series capacitor for the TPS54A20

South Asia Industrial Webinar

SAR ADC Design

Targeting the Test and Measurement application, this section includes many topics relevant to designing with SAR ADC devices.

Automotive front end power stage

Riding out automotive transients using buck-boost dc-dc stage

This section presents the buck-boost dc-dc converter as an effective and efficient solution for the wide vin automotive battery rail. The advantages compared to pre-boost and two stage solutions are presented. Also contains an overview of buck-boost converter and controller offerings convering various current and power levels.

86 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki