Sort by:

84 Results

Power fundamentals - buck regulator architectures

This series provides an overview of the various buck regulator architectures, including:

  • Multi-Phase Buck Regulators
  • Hysteretic Buck Regulators
  • COT Buck Regulators
  • Current/Emulated Current Mode Buck Regulators
  • Voltage Mode Buck Regulators

Power fundamentals - DC-DC fundamentals

This five-part series provides an overview of DC-DC converters.

Switching Power Supply Component Selection

This 7-part series discusses tips and best practices for selecting the appropriate components for your switching power supply.

Not All Regulators Are Created Equal

Explore several subtle nuances to significantly improve power supply performance. Examples include: the hidden advantages of synchronous regulators, a module that features the best attributes of a switcher AND an LDO, and tips to reduce system noise by manipulating output capacitor combinations.

Engineer It - How to Test Power Supplies

TI's Bob Hanrahan describes how to properly test a DC/DC power supply, and ensure that it works reliably over various operating conditions. This four-part series is intended to provide the designer with a suffici

Optimizing DC/DC Converters for EMI in Automotive systems

Optimizing DC/DC Converters for EMI in Automotive Systems

EMI (electromagnetic interference) mitigation is a critical step in the design process in most electronic systems, and especially so in the automotive world. In many cases, automotive OEM emissions requirements are even more stringent than both national and international standards bodies like the FCC. Unfortunately, by their nature, switching regulators are sources of EMI; but, in order to keep power supply designs small and efficient, switchers are a critical component. So how can you reap the benefits of a switching regulator while still meeting challenging EMI requirements?

Practical Comparisons of 3 different DC-DC Control Modes

Certain end-equipment, like communications, server, industrial, and personal electronics have design challenges solved by the DC/DC converter’s control-mode.  This session will compare and contrast 3 different devices using 3 different control modes under the same design criteria to see how each control mode solves particular size, efficiency, external component, ripple and transient response design challenges.

DC/DC Buck Converters: What do all of these features mean?

As switching converters have evolved, they have taken on a host of new features to operate more efficiently and quietly. To some, however, all these new features listed on the front page of the datasheet may seem foreign. This training series dives into those features to explain the true benefits of each and help you decide which are necessary for your power supply design. Specifically covered in this series are the buck converter topics of:

Layout, power loss, and packaging to address thermal concerns with integrated FET DC/DC converters

This training series dives into how to get the best thermal performance with TI’s latest buck converters. Special focus given to the HotRod package.

Power Distribution for SoC and FPGA applications

In this training series, we examine the power requirements of SoC and FPGA devices discuss the optimal approach to powering them for specific use cases.

WEBENCH Power Designer: Step by Step

WEBENCH Power Designer makes end-to-end power supply design fast and intuitive. This video series describes each step of the WEBENCH process: Device selection, customization, simulation, and exporting designs to the next environment. 

Wide Input DC-DC Converters Servicing Low Quiescent Current Needs in Industrial Applications

Battery life cycle is a key for high-cell-count battery pack-based end-equipment. Low quiescent current (Iq) consumption of DC-DC converters is a major feature that helps achieve longer battery life cycles. TI’s latest buck converters boast low Iq consumption as they maintain high efficiency in the active mode (heavy loads) as well as extend battery life during standby modes. This training will cover an overview of battery powered industrial applications and the specific power consumption requirements for these end equipments.

Low noise DC/DC

You CAN have both - low noise AND high efficiency

For noise-critical portable applications, such as GPS receivers, connectivity, and sensing, power supply designers always had to choose between longer battery run time (from higher efficiency) or higher signal chain performance (from the increased sensor sensitivity possible with a quieter power supply). For line-powered industrial or communications equipment applications, designers have been forced to dissipate significant amounts of power in LDOs to achieve the desired noise performance. Achieving both low noise and high efficiency was impossible.

Troubleshooting Bucks Training Series

This series of videos will discuss common issues and debug tips and tricks for buck converters and controllers.

Capacitor selection

This sections covers tips for selecting the appropriate capacitors for your switching power supply.

Inductor selection

This sections covers tips for selecting the appropriate inductors for your switching power supply.

High Frequency Challenges

Learn about how to overcome high frequency challenges using TI's series capacitor buck converter.

Automotive front end power stage

Automotive transients introduction

This video presents a short overview of automotive frond-end and the transients tackled by the frond-end power conversion stage connected to an automotive battery rail.

Automotive front end power stage

Automotive transients explained

This section presents a high level overview of automotive board net and the describes the conditions that the the tests simulate. These include:

  • Reverse polarity
  • Jump start
  • Load sump
  • Starting profile
  • Superimposed ac
Automotive front end power stage

Architecting the dc-dc stage for automotive transients

This section presents an approach to architecting the dc-dc conversion stage to handle the transients on automotive battery rail. Following topologies are covered:

  • Buck-boost
  • Always-on boost + buck
  • On-demand boost + buck
  • Buck + post boost

Pro/cons of the different approaches are also discussed.

84 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki