Sort by:

107 Results
South Asia Industrial Webinar

2018 South Asia Industrial Webinar Series

The topics will cover system design issue and solution for Building Automation, Power Delivery and Test & Measurement. TI experts introduce the latest technology and innovation system reference design. Discover ways to enhance the time-to-market and create safer and efficient industrial systems.

Low noise DC/DC

A deep dive into the DC/DC + LDO approach

Understand the performance and trade-offs of the traditional low noise and high efficiency approach of using a DC/DC followed by an LDO, through a deep dive into TIDA-01566. The size, quiescent current, efficiency, temperature rise, noise, and adaptability of three different approaches are compared: DC/DC + LDO, DC/DC only, and LDO only.

Low EMI and Noise performance with DC/DC switching regulators

Achieving low noise and high efficiency for noise-sensitive analog loads

Noise and EMI can be detrimental to sensitive analog signal chain circuitry. For this reason, many engineers automatically default to linear regulators. But, in doing so, they are essentially trading one problem (noise) for another (heat dissipation). In this section we will discuss what types of signal chain loads can be driven directly by a switching regulator to get low noise and EMI without sacrificing efficiency. We will also discuss when a linear regulator is absolutely needed to reach levels of noise not possible with a switcher.

Resources:

Low EMI and Noise performance with DC/DC switching regulators

Achieving low noise and low EMI performance with DC/DC switching regulators

Mitigating switching regulator EMI and noise is seen by engineers as a black art. Mess with the feng shui of the PCB layout too much, and the system may not pass CISPR standards. Because of this, many power designers simply turn to linear regulators as a guaranteed way to avoid the headache of reducing emissions.

An Introduction to Multiphase Buck Regulators

The below introductory section features a video briefly discussing what exactly multi-phase buck regulators are, what applications they're suited for, and some of the challenges associated with implementing them. Additionally, the listed resources dive a little deeper into the topics covered in the video, providing further instruction in the beginning of your multiphase journey. 

White Papers 

Automotive front end power stage

Architecting the dc-dc stage for automotive transients

This section presents an approach to architecting the dc-dc conversion stage to handle the transients on automotive battery rail. Following topologies are covered:

  • Buck-boost
  • Always-on boost + buck
  • On-demand boost + buck
  • Buck + post boost

Pro/cons of the different approaches are also discussed.

Automotive front end power stage

Automotive transients explained

This section presents a high level overview of automotive board net and the describes the conditions that the the tests simulate. These include:

  • Reverse polarity
  • Jump start
  • Load sump
  • Starting profile
  • Superimposed ac
Automotive front end power stage

Automotive transients introduction

This video presents a short overview of automotive frond-end and the transients tackled by the frond-end power conversion stage connected to an automotive battery rail.

Buck Converter Basics

  • Common Operation of Step-Down (Buck) Converters
  • Buck Converter Common Operation:  Switching Frequency
  • Duty /Density Change  VM/CM vs HM
buck-boost in wireless security cameras and video doorbells

Buck-boost and boost converters in wireless security cameras and video doorbells

In this series, we will show you how to improve wireless security cameras, video doorbells and similar devices with buck-boost and boost converters.

Capacitor selection

This sections covers tips for selecting the appropriate capacitors for your switching power supply.

Capacitor self heating

This section will cover the effect of capacitor self heating on your DCDC design.

Closed Loop Analysis

This section will compare the closed loop analysis of the 3 different solutions.

Comparison of the large signal load transient response

Large signal load transient response:  Basic Comparison

Comparison of the large signal load transient response: Continued

Large Signal Load Transient Response: Parameter Comparison

Compensation network selection for the TPS54824

This section will cover selection of the compensation components for the TPS54824

Low EMI and Noise performance with DC/DC switching regulators

Concepts of Switching Regulator EMI and Noise Mitigation

Before we dive into specific application-based examples of noise and EMI mitigation, let's start with the basics. What is noise? What is EMI? What is ripple? How are they measured? What are some common approaches to limiting their effects? This section discusses these topics with a more conceptual approach to serve as a primer for the rest of the series. 

Resources:

Control Mode Comparision

This section will cover compare the 3 different control mode chosen

Control of SMPS - A Refresher: Part 1

This part discusses some of the Basic concepts used and then a brief review of Transfer Functions and finally an outline of the building blocks of SMPS Control Systems

Control of SMPS - A Refresher: Part 2

This part discusses Loop Transfer Functions, that is the Control to Output: G(s) and  Output to Control: H(s) functions and then a discussion on Loop Compensation
107 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki