Sort by:

92 Results
Rapid prototyping fundamentals training series

Rapid prototyping fundamental functions

These videos provide understanding of the fundamental functions used for rapid prototyping on TI solutions with minimal or no programming, including the following:

  • Implementing necessary prototyping functions such clocks/GPIO, Read A/D, I2C/SMBus, etc.
  • Seamless interface of various analog EVMs for customer “proof of concept”
  • Standalone UI – Button, (GP Input - GPIO), LCD Display (“Hello”), Music, Serial Interface (Putty, Echo)

66AK2Gx Processors

The 66AK2Gx DSP + ARM processors are designed for automotive and consumer audio, industrial motor control, smart-grid protection and other high-reliability, real-time, compute-intensive applications. This training provides an overview of the device architecture and the processor cores. It also includes training related to voice and audio processing, as well as additional how-to video topics relevant to the EVMK2G evaluation module.

Processor SDK for KeyStone Processors

TI provides key runtime software components and documentation to further ease development. TI’s online training provides an introduction to the Processor SDK and how to use this software to start building applications on TI processors.

PRU for 66AK2Gx Processors

The Programmable Real-Time Unit (PRU) is a small processor that is tightly integrated with an IO subsystem, offering low-latency control of IO pins on TI’s SoC devices including the 66AK2Gx, AM335x, AM437x, and AM57x Processors. The PRU is customer-programmable and can be used to implement simple and flexible control functions, peripherals, and state machines that directly access IO pins of the device, as well as can communicate with the application cores.

High Frequency Challenges

Learn about how to overcome high frequency challenges using TI's series capacitor buck converter.

Introduction, value proposition and benefits

Series introduction to Mobile Smart TV and the market

Design considerations

Mobile Smart TV design considerations

Benefits of DLP Pico technology for Mobile Smart TV

Benefits of DLP in the Mobile Smart TV  application space

Introduction

This section covers wireless network trends, key technologies, and problem statements for smart grid IoT. 

6LoWPAN-based Wireless Network Protocols

This section covers system-level deep dive on key wireless network protocols of 6LoWPAN, RPL, and CoAP for smart grid IoT. 

System-Level Examples for Wireless Networks on Smart Grid IoT

This section covers system-level examples for wireless networks on smart grid IoT. We will provide software- and system-level details for two system examples: 6LoWPAN-Contiki and sub-1GHz sensor to cloud industrial IoT gateway reference design. 

Summary

This section summarizes the wireless network challenges and solutions for a smarter grid IoT training series. 

Introduction

This section covers what is meter tampering, why is this a problem for utility providers, and some common ways a meter is tampered.

Current sensor and metrology architecture options

This section compares two types of current sensors used in electricity meters: current transformers and shunts.  In addition, it discusses three different architectures for sensing the voltage and current samples used to calculate the metrology parameters.  These architectures include a SoC-based architecture, AFE-based architecture, and ADC-based architecture.

Introduction to TIDA-010037 reference design

This section provides an overview of the TIDA-010037 reference design, which uses the ADS131M04 delta sigma standalone ADC for sensing the voltage and current necessary to calculate metrology parameters.  The TIDA-010037 design targets Class 0.1 split-phase current transformer meters.

TIDA-010037 hardware design

This section provides an overview of the hardware used in the TIDA-010037 design, which includes information on the eFuse circuit used to create a current limited rail for connection to an external communication module.  In addition, this section discusses the circuits used to translate the Mains voltage and current to the voltage waveform sensed by the ADS131M04.

Designing software for split-phase electricity meters that use standalone ADCs

This section covers the initialization code and algorithms that can be used to calculate metrology parameters in a split-phase system using the sensed voltage and current samples

Calibration and metrology accuracy results

This section discusses the procedure used to calibrate the TIDA-010037 design and the results obtained with this design.
92 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki