Sort by:

39 Results
25 functions for 25 cents using TI’s MSP430 Value Line Sensing microcontrollers

25 Functions for 25 Cents Video Series

Simple functions such as timer replacement, input/output expanders, system reset controllers and stand-alone EEPROM are common on PCBs. Low-cost, ultra-low-power MSP430™ value line  microcontrollers (MCUs) offer cost savings when replacing digital and analog functions in a system. Watch this series to see how MSP430 MCUs can be used to enhance communication, pulse width modulation, systems and housekeeping, and timer functions in your next design.

Advanced Signal Processing on 16-bit MSP430 FRAM MCUs with Low Energy Accelerator (LEA)

This training series covers LEA or Low Energy Accelerator a vector math co-processor, the performance benchmark, and how to get started on the new MSP430FR599x. LEA is capable of performing various signal processing tasks efficiently without any CPU intervention. For example, LEA can perform a 256-point complex FFT in just ~5k cycles whereas a Cortex-M4F would take approximately 17k cycles (3.6x improvement).

Application Demos of Capacitive Touch Featuring MSP430 MCUs with CapTIvate Technology

Capacitive sensing enables buttons, sliders, wheels and proximity features to be added to a wide-range of applications including building and home access panels and security systems, appliances, personal electronics and more. Watch the videos in this series to get an idea of the capabilities CapTIvate technology can bring to your next application.

BOOSTXL-CAPKEYPAD Capacitive Touch BoosterPack Module Introduction and Demos

This series provides an overview of the BOOSTXL-CAPKEYPAD capacitive touch BoosterPack plug-in module. The BoosterPack features the MSP430FR2522 MCU and allows developers to evaluate capacitive touch capabilities for their next design. The videos provide an overview of the BoosterPack and the out-of-box demos using the CapTIvate Programmer board and the MSP430FR6989 and MSP430F5529 LaunchPad development kits.

Capacitive Touch Basics with MSP430 MCUs featuring CapTIvate Technology

This section of the video series provides an introduction to capacitive touch using MSP430 MCUs with CapTIvate technology as well as how to get started with CapTIvate Design Center and CapTIvate development tools.

Designing with Delta-Sigma ADCs: System design considerations to optimize performance

Delta-sigma analog-to-digital converters (ADCs) are oversampling converters typically used in applications requiring higher resolution. However, ADCs do not work by themselves. In fact, they require several key components around them, including a front-end amplifier, a voltage reference, a clock source, power supplies, and a good layout. Many devices integrate these features together with the ADC to offer a complete system solution, which simplifies the design for customers and minimizes board space.

Detecting magnetic tampering using hall-effect sensors

For anti-tampering, it is common to try to detect the presence of a strong magnet. In this section, we will cover the use of hall sensors for low-power detection of strong magnetic fields in three dimensions.  Details on our magnetic tamper detection reference design, TIDA-00839, will be provided as well as some of the design considerations that were kept in mind when creating this reference design.  

Differential Temperature Measurement sub-system reference design

TIDA-01526 implements a high-precision Differential Temperature Measurement (DTM) subsystem using a 24-bit, low-power, Delta-Sigma ADC. Heat and cold meter DTM subsystems typically use two 2- or 4-wire RTDs such as PT100, PT500 or PT1000 and can achieve measurement accuracy of 20 mK over a water temperature range of 3°C to 180°C. The MSP430FR6047 application MCU converts the resistance value into a temperature reading in TIDA-01526.

Digital temperature sensor replacement of RTD sensors with TMP116

The TMP116 digital precision temperature sensor for the -55 to +125ºC range achieves higher accuracy than the Class AA PT sensor with a 1-point calibration. A small PCB including TI's TPD1E10B06 or TPD1E04U04 protection devices can be sealed into a RTD metal tube and meet the EN 61000-4-2 and -4-4 levels of ESD protection. The 64-bit internal EEPROM inside TMP116 stores user defined calibration data into the digital temperature sensor, simplifying integration with application MCUs, such as MSP430FR6047, FR6989 or CC13xx/26xx wireless MCU families.

Energy Measurement Design Center for MSP430 MCUs: Training Series

Energy Measurement Design Center for MSP430 MCUs: Training Series

This training series provides an overview of the the Energy Measurement Design Center for MSP430x microcontrollers (MCUs) The Energy Measurement Design Center is a rapid development tool that enables energy measurement using TI MSP430i20xx and MSP430F67xx flash-based MCUs. It includes a graphical user interface (GUI), documentation, software library and examples that can simplify development and accelerate designs in a wide range of power monitoring and energy measurement applications, including smart grid and building automation.

Fundamental PCB Layout and Design Guidelines of MSP430 MCUs with CapTIvate Technology

This training covers the fundamental design techniques required to implement a successful capacitive sensing hardware design. This series will explore a number of design topics, including:  Basic layout guidelines overlays, back lighting; Dealing with moisture; Self capacitance sensors; Mutual capacitance sensors; and Proximity sensors.

Getting Started MSP430G2553 Value Line LaunchPad Workshop Series

This series will walk you through the MSP430G2553 Value-Line Microcontroller LaunchPad and its peripherals.

Getting started with the MSP430 5xx Experimenters Board (7-part series)

This 7 Part Series with the MSP430 5xx Experimenters Board will cover the following topics:

  • Introduction
  • Active and low power mode operation
  • Mixed signal application example
  • Hardware timers to conserve power
  • Implementing a fully optimized ADC12 routine
  • MSP430 tools, resources, and conclusions

Hardening a meter against magnetic tamper attacks

In this section, we will cover how to harden a meter against these magnetic tamper attacks by using shunts for current sensors. For poly-phase implementations, I will go over how to use isolated delta sigma modulators to add the necessary isolation to use shunt current sensors and create magnetically immune poly-phase energy measurement systems. The TIDA-00601 and TIDA-01094 reference designs, which show how to implement a poly-phase isolated shunt measurement system, will be discussed as well as the associated AMC1304 high-side power supplies used in these designs.

Introduction to EMC Challenges and Design with CapTIvate MCUs

This video series provides a reference on designing capacitive touch capabilities to withstand EMC challenges commonly found in human machine interface applications.
Tech Days

MCU and Processor

Learn more about TI microcontroller (MCU) and processor solutions.

Measuring RTD sensors with Delta-Sigma ADS1220 family

ADS1220 Delta-Sigma family uses the ratiometric approach for measuring RTD sensors with the built-in current excitation source. Offset and gain calibration are required before the resistance measurement is converted into a temperature reading by the application MCU.
The MSP-EXP430FR2355 LaunchPad development kit training

MSP-EXP430FR2355 LaunchPad Development Kit Training

The MSP-EXP430FR2355 LaunchPad™ development kit is a member of the MSP430™ Value Line MCU family. The LaunchPad kit provides a quick evaluation and prototyping tool for the MSP430FR2355 microcontroller (MCU). This series provides an overview of the LaunchPad kit’s features and the out-of-box light sensing and smart analog combo GUI demos.
39 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki