Sort by:

26 Results
Troubleshooting general board clean amplifier FPD Link integrated circuit PCB printed circuit board application linear ADC converter sensor datasheet verification failure analysis debugging debug submission FA customer return DAC audio ABA WCSP

Troubleshooting Tips: Integrated Circuits

The integrated circuits troubleshooting guide highlights various techniques to assist with application problem-solving, debugging and datasheet measurements across all TI products. The hands-on courses aid in circuit analysis, isolate the root cause of an application non-conformance and provide detailed product level information to a TI representative. Industry experts present each topic in order to help reduce debugging time and move quickly through troubleshooting to production.

Troubleshooting general board clean amplifier FPD Link integrated circuit PCB printed circuit board application linear ADC converter sensor datasheet verification failure analysis debugging debug submission FA customer return DAC audio ABA WCSP

Troubleshooting Tips: FA Submissions

This video section gives recommendations and best practices for application debugging techniques to assist during the FA submission process. 
Troubleshooting general board clean amplifier FPD Link integrated circuit PCB printed circuit board application linear ADC converter sensor datasheet verification failure analysis debugging debug submission FA customer return DAC audio ABA WCSP

Troubleshooting Tips: Board Level

This video section gives recommendations and best practices for application debugging techniques at the printed circuit board level.
TI.com fully leverage ti.com

TI.com video series

Explore the tools and features of TI.com in this how to video series designed to help today’s engineers find the parts they need as fast as possible. This series reviews the different tools and features available online that make it easier to navigate the TI portfolio and leverage the product information available.

TI-RSLK MAX Module 9 – SysTick timer

In this module, you will learn the fundamentals of SysTick timers and pulse width modulators (PWM), including how to measure pulse times and period with a logic analyzer and amplitude with an oscilloscope. It is important to understand the concept of PWM as we will use it to adjust power to the motors.

TI-RSLK MAX Module 8 – Interfacing input and output

The purpose of this module is to develop interface switches and an LED so the robot can effectively detect wall collisions. Many sensors and actuators deploy LEDs, so understanding how they operate will be important to building your robot.

TI-RSLK MAX Module 7 – Finite state machines

This module will demonstrate how to use finite state machines as a central controller for the system. Finite state machines are an effective design process to have in your embedded system tool box and can be used to solve problems with inputs and outputs.

TI-RSLK MAX Module 6 – GPIO

In this module, you will interface a line sensor (infra-red sensor) to the microcontroller and learn how to write software to initialize GPIO pins.  The line sensor is a simple and accurate sensor for solving robotic challenges.

TI-RSLK MAX Module 5 – Building the robot

In this module, you will create the robot. You will then be able to measure the voltage, current and energy for a battery while managing voltage regulation. This will allow you to build the circuits needed to power the robot.

TI-RSLK MAX Module 4 – Software design using MSP432

This module is an introduction to C, a general-purpose programming language, in addition to the concepts of compiling and debugging using the MSP432 and TI Code Composer Studio™.  Debugging skills are a valuable tool when developing complex systems involved with robotics.

TI-RSLK MAX Module 3 – ARM Cortex M

This module serves as a brief introduction to the ARM Cortex-M microcontroller, assembly programming language and some debugging techniques. Understanding how the processor works is essential for the design of embedded systems, such as the one used in your robot.  

TI-RSLK MAX Module 20 – Wi-Fi

In this module, you will learn how to develop a set of Wi-Fi communication functions and learn how to interact with web services. By using the CC3100 to communicate with the MSP432, you will interface a Wi-Fi radio module to the microcontroller.

TI-RSLK MAX Module 2 – Voltage, current, and power

The purpose of this course is to review basic electronic components and the electrical properties needed to interface sensors and actuators to a microcontroller. You will learn how to measure reactance of a capacitor and use your project to measure current and voltage. The electrical properties of the capacitor will help you design circuits that “filter” or remove noise from your robot.

TI-RSLK MAX Module 19 – Bluetooth low energy

The purpose of this module is to understand basic concepts of Bluetooth® low energy (BLE). You will interface the TI SimpleLink™ BLE CC2650 Module BoosterPack™ Plug-in module to the SimpleLink MSP432P401R LaunchPad™ development kit using universal asynchronous receiver/transmitter (UART) communication. You will create a BLE service with multiple characteristics and design a robot system that can be controlled by a smart device using BLE.

TI-RSLK MAX Module 18 – Serial communication

The purpose of this module is to understand the operation and use of first in first out (FIFO) queue to interface the robot to the PC using a serial channel. You will create two FIFO queues and design a command interpreter to assist in the robot challenge. You will develop an interrupting device driver using the universal asynchronous receiver/transmitter (UART). This serial port allows the microcontroller to communicate with devices such as other computers, input sensors, and output displays.

TI-RSLK MAX Module 17 – Control systems

The purpose of this module is to create a control system by combining the sensors with the actuators. Incremental and integral control are simple algorithms for controlling motor speed.

TI-RSLK MAX Module 16 – Tachometer

In this module, you will learn how to interface the tachometers that enable the robot to measure motor rotational speed. Tachometer data allows your software to drive straight, drive for a prescribed amount of distance or turn at a prescribed angle.

TI-RSLK MAX Module 15 – Data acquisition systems

This module will teach you how to interface the infrared distance sensors using the analog-to-digital converter. IR distance sensors are an essential component for solving robot challenges where avoiding walls is necessary to achieve the goal.

TI-RSLK MAX Module 14 – Real-time systems

This module demonstrates how to use priority interrupts for creating real-time systems.  As your robot system becomes more complex, period interrupts are one way to combine multiple threads onto one microcontroller.

TI-RSLK MAX Module 13 – Timers

In this module, you will write software that uses the timers to create PWM outputs. Using timers for PWM and period interrupts provide mechanisms to grow the complexity of the robot system.

26 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki