Hint: separate multiple terms with commas

E.g., 08/04/2020

E.g., 08/04/2020

Hint: separate multiple terms with commas

E.g., 08/04/2020

E.g., 08/04/2020

Sort by:

224 Results

Designing a High-Power Bidirectional AC/DC Power Supply Using SiC FETs

High-power bidirectional AC/DC power supplies are widely used as uninterruptible power supplies (UPS), energy storage systems (ESS) and onboard chargers (OBC) with with vehicle-to-grid (V2G) capability. Compared to the traditional approach ¡V using one unidirectional rectifier and one unidirectional inverter to achieve a bidirectional energy flow ¡V a bidirectional rectifier can provide advantages such as smaller size, higher power density and higher efficiency. This paper reviews topologies, design considerations and design challenges of high power bidirectional AC/DC power supplies.

Voltage Regulator Design and Optimization for High-Current, Fast-Slew-Rate Load Transients

Designing to the tight voltage tolerances of today’s modern central processing units and field programmable gate arrays (FPGAs) is becoming more difficult as their current draw increases and becomes more dynamic. Getting the correct output capacitance mix to ensure first-time power-delivery success is no small feat with >100-A steps and slew rates in excess of 100 A/µs. Standard point-of-load design techniques no longer hold true; we need new methods to choose the output capacitance.

Low EMI

Designing a Low EMI Power Supply

Mitigating EMI is seen by engineers as a black art. Choose the wrong feature set - or mess with the feng shui of the PCB layout too much - and the system may not pass stringent CISPR standards. 

This training series - along with all of the accompanying documentation - is an aggregation of reference materials showing engineers an easier path to design an efficient power supply that meets EMI requirements.

Modules EMI

Reducing EMI through device selection

Efficiently addressing EMI starts at the device selection stage. On-silicon technologies like spread spectrum or unique packaging approaches like HotRod™ QFN can help reduce EMI before we even begin the discussion of component layout and filtering. 

Resources:

Reducing EMI via considerations external to the IC

For many engineers, layout for EMI mitigation is a black art. It may seem like the slightest adjustment could be the difference between passing or failing CISPR standards. Because of this, some power designers may shy away from using devices with switching elements as a guaranteed way to avoid the headache of reducing emissions. But this may be trading one problem for another, as switching devices generally have better efficiency and thermal performance.

Power Supply Design Seminar 2020 Technical Resources

TI’s Power Supply Design Seminar (PSDS) is an essential training curriculum for power supply design engineers. This on-demand training course addresses basic design principles, advanced power supply concepts and real-world application examples. Select any topic and start learning today.

Each topic includes training videos, a technical white paper and presentation PDF.

Start by selecting any of the topics below or on the left-side topic navigation. 

Topics include:

Enhancing power supply performance with the TPSM53604 power module

Reducing power supply solution size has traditionally come at the expense of reduced efficiency and thermal performance. But with TPSM53604 and its routable lead frame (RLF) QFN packaging, this is no longer the case. See how you can leverage the TPSM53604 in your next design to buck the trend and set a new bar for power module size and performance.

Common Mistakes in Flyback Power Supplies and How to Fix Them

When you run into a problem in your power-supply design, the odds are that someone else has already solved the same problem on another design. Wouldn’t it be great if you could learn from their mistakes? This five part video series focuses on some of the most common mistakes in the design and troubleshooting of low-power AC/DC power supplies, specifically focusing on the flyback topology.

EMI: The Fundamentals

Before we dive into specific application-based examples of noise and EMI mitigation, let's start with the basics. What is EMI? How is this different from noise? What is ripple? How are they measured? What are some common approaches to limiting their effects? This section discusses these topics with a more conceptual approach to serve as a primer for the rest of the series. 

Resources:

Application-Specific EMI Considerations

Some systems simply require more attention than others when it comes to EMI. In this section, we will examine some of those specific end applications and provide some helpful hints to reach EMI targets with each.

Resources:

Power-Conversion Techniques for Complying with Automotive Emissions Requirements

Power Conversion Techniques for Complying with Automotive Emissions Requirements

Comité International Spécial des Perturbations Radioélectriques (CISPR) 25 is the typical starting point for evaluating conducted and radiated emissions in automotive systems. This topic addresses the unique challenges of designing power converters to pass CISPR 25 requirements, including background information on the CISPR 25 standard and test setups. We explain common noise sources in power converters and various techniques to reduce conducted and radiated emissions, including input filter design, frequency selection, mode selection, snubber design, shielding and layout.

Type-C PD 於工業電腦與電子銷售系統的應用

課程說明 USB 的演進,並說明了 Type C 的通訊協定、電源傳輸協定,最後介紹了不同使用情境下 TI 的相關應用晶片。

Practical EMI Considerations for Low-Power AC/DC Supplies

Electromagnetic interference (EMI) is an essential part of every power-supply design, but too often gets relegated to the end of the design flow, at which point its resolution can be time-consuming, costly and inefficient. This seven part video series will help dispel fears about EMI, and show how to find and fix the issues.

Basic background on eFuse protection ICs

The basics: When and how to use eFuses

Browse through our beginner resources below if you’re brand new to eFuses or need a refresher on common eFuse functions.

Design tips for eFuse protection ICs

Design tips for common eFuse use-cases

Or, jump right into our parametric table below to find the eFuse that meets your specification. 

Discover resources to help with efuse design in industrial, automotive and enterprise systems

Application-specific resources for eFuses

Enterprise data centers. Programmable logic controllers for fully-automated factories. Surround-view systems in your vehicle. What do these applications have common? If a fault impacts the power rails, the impact could be disastrous. Browse our video content or fully tested reference designs to see how our protection devices are solving real-world problems for these spaces.

Learn the basics and more advanced application concepts for implementing eFuse protection ICs

Accomplish straightforward system protection with fully integrated eFuses

eFuses are highly integrated ICs that offer device and system-level protection at the input or the output. Traditionally, complete power path protection circuitry was accomplished with a handful of discrete components – components that can use up to 70% greater board space, introduce unnecessary design hurdles, and potentially slow your time to market if UL recognition is required. Those problems are eliminated with our fully integrated eFuses that include over current, over voltage, reverse polarity and more essential protection functions.

Power Factor Correction Circuit Basics

Power Factor Correction (PFC) Circuit Basics

From laptop adapters to power tools, any end equipment powered from the AC grid represents a complex load where the input current is not always in phase with the instantaneous line voltage. As such, the end equipment consumes both real power as well as reactive power from the grid. The ratio between real, usable power (measured in watts) and the total real-plus-reactive power is known as the power factor.

PSDS

Power Supply Design Seminar 2016 Technical Resources

TI’s Power Supply Design Seminar (PSDS) is an essential training curriculum for power supply design engineers. This on-demand training course addresses basic design principles, advanced power supply concepts and real-world application examples. Select any topic and start learning today.

Each topic includes training videos, a technical white paper and presentation PDF.

Start by selecting any of the topics below or on the left-side topic navigation.

Topics include:

Solving design challenges in automotive camera modules

Solving Design Challenges in Automotive Camera Modules

In this series, we'll discuss the key design challenges need to be addressed for the automotive camera modules and how to solve those challenges using a PMIC.

224 Results
arrow-topclosedeletedownloadmenusearchsortingArrowszoom-inzoom-out arrow-downarrow-uparrowCircle-leftarrowCircle-rightblockDiagramcalculatorcalendarchatBubble-doublechatBubble-personchatBubble-singlecheckmark-circlechevron-downchevron-leftchevron-rightchevron-upchipclipboardclose-circlecrossReferencedashdocument-genericdocument-pdfAcrobatdocument-webevaluationModuleglobehistoryClockinfo-circlelistlockmailmyTIonlineDataSheetpersonphonequestion-circlereferenceDesignshoppingCartstartoolsvideoswarningwiki