Sort by:
ISO 7637 Standards & Solutions Series
This video series covers:
- Automotive Transient standards and TI solutions
- Purpose and goals of standards
- Questions to ask in product development
- How to find right TI solutions and support
- How to identify opportunities and to provide alternative solutions
Automotive transients introduction
This video presents a short overview of automotive frond-end and the transients tackled by the frond-end power conversion stage connected to an automotive battery rail.
Automotive transients explained
This section presents a high level overview of automotive board net and the describes the conditions that the the tests simulate. These include:
- Reverse polarity
- Jump start
- Load sump
- Starting profile
- Superimposed ac
Architecting the dc-dc stage for automotive transients
This section presents an approach to architecting the dc-dc conversion stage to handle the transients on automotive battery rail. Following topologies are covered:
- Buck-boost
- Always-on boost + buck
- On-demand boost + buck
- Buck + post boost
Pro/cons of the different approaches are also discussed.
Reverse battery protection
This section presents the different methods of protecting the electronic loads connected to the automotive battery rail in the event of accidental reverse battery connection. The methods covered include:
- Schottky diode
- PFET + discretes
- Smart diode + NFET
Riding out automotive transients using buck-boost dc-dc stage
This section presents the buck-boost dc-dc converter as an effective and efficient solution for the wide vin automotive battery rail. The advantages compared to pre-boost and two stage solutions are presented. Also contains an overview of buck-boost converter and controller offerings convering various current and power levels.
Riding Out Automotive Transients : Architecting Front End Power Conversion Stage for Automotive Off-Battery Loads
With rapidly expanding electronic content in latest generation of cars, there is an ever increasing need for power conversion from the car battery rail. The 12-V battery rail is subject to a variety of transients. This presents a unique challenge in terms of the power architecture for off-battery systems. This presentation introduces the different types of transients that occur in automotive battery rails, the causes of those transients, and the standards and specifications defining the test conditions for those transients.