TI Automotive mmWave Radar Solution

Automotive 76~81GHz mmWave sensor
Automotive Radar Applications

CORNER RADAR
- Single chip radar sensor solution
- Integrated DSP, Memory
- >130m Range using single chip
- ~170m using 2 chip

IMAGING RADAR
- Cascaded radar sensor solution
- >350m Range
- < 1 deg angular accuracy

RADAR FOR PARKING
- Antenna on package solution
- Multimodal/Multi functional
- High resolution and wide field of view

Body & Incabin Sensing
- Automatic Door opener
- Driver Vital Sign Detection
- Occupant Detection
- Gesture detection
TI introduce the first Single Chip mmWave IC

Discrete Multi-Chip mmWave Sensor
- Discrete solution – expensive
- Complex and critical signal routes
- Unconventional packaging
- Prone to noise
- Lack of system level observability
- Crude implementation of RF and Baseband safety

TI Single-Chip mmWave Sensor
- Smaller in size
- Simpler design
- Built in monitoring and calibration (ASIL)
- High Resolution, less false positives
- Programmable core
- Lower Power
Trend in Radar sensors

- 77 GHz LRR Micro + MMIC + Highly Automated Driving
- 77 GHz MRR Micro + MMIC
- 24 GHz SRR Micro + MMIC + NCAP, Surround Radar, Park Assist
- Cascaded 77 GHz (8+)RX (6+)TX Signal Processor
- Single Chip 76-81 GHz 4RX 3TX

Today 2021
Automotive radar roadmap

High performance front end

AWR1243
3TX / 4RX
CSI, SPI
4GHz RF, 15MHz IF
10.4 x 10.4 BGA

AWR1243P
3TX / 4RX
CSI, SPI
4GHz RF, 15MHz IF
3rd Tx, Phase Rotator
10.4 x 10.4 BGA

AWR1642
2TX / 4RX
1.5MB RAM
SPI, CAN, CANFD
4GHz RF, 5MHz IF
10.4 x 10.4 BGA
PPAP Ready

AWR1443
3TX / 4RX
576KB RAM
SPI, CAN
4GHz RF, 5MHz IF
10.4 x 10.4 BGA

Single chip

AWR1243P
3TX / 4RX
CSI, SPI
4GHz RF, 15MHz IF
3rd Tx, Phase Rotator
10.4 x 10.4 BGA

AWR1843
3TX / 4RX
2MB RAM
SPI, CAN, CANFD
4GHz RF, 10 MHz IF
10.4 x 10.4 BGA

AWR2xxx

2017
2018
2019
2020
Automotive mmWave Sensors

AWR1243
- Radar Sensor
 - Use Cases
 - Imaging Radar Sensor
 - 2x or 4x AWR12 (cascade) + External DSP
 - MRR and LRR
 - ASIL-B capable
 - PPAP/Production: Now

AWR1642
- Radar Sensor + DSP
 - Use Cases
 - SRR Single chip Radar
 - 100m Cross traffic Alert
 - Body sensing, Occupant sensing, Vital sign monitoring
 - ASIL-B capable
 - PPAP/Production: Now

AWR1843
- Radar Sensor + DSP
 - Use Cases
 - Parking w/ height measurement
 - MRR single chip radar
 - ASIL-B capable
 - Sampling: July 2018
 - PPAP/RTM: 2Q19
Sensor configuration with TI mmWave solutions

- **IMAGING**
 - AWR1243
 - Processor

- **CORNER/MRR**
 - AWR1243
 - Processor

- **LRR**
 - AWR1243

- **SRR**
 - AWR1642

- **USRR**
 - AWR1642

- **Proximity**
 - AWR1443

- **Satellite Configuration**
 - AWR1243

- **FPD**
 - Processor

- **Satellite Configuration**
 - AWR1243

- **Processor**
 - AWR1243

- **CANFD**
 - Processor
Delivering mmWave sensing solutions
Hardware Platforms

<table>
<thead>
<tr>
<th>Platform</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWR1443/AWR1642</td>
<td>Enables evaluation of single chip radar</td>
</tr>
<tr>
<td></td>
<td>Proximity sensor demo on AWR1443 EVM</td>
</tr>
<tr>
<td></td>
<td>SRR demo on AWR1642 EVM</td>
</tr>
<tr>
<td></td>
<td>Environment: mmWave-SDK</td>
</tr>
<tr>
<td>AWR1x + DCA1000EVM</td>
<td>Enables RF performance evaluation</td>
</tr>
<tr>
<td></td>
<td>Raw ADC capture into PC and then post process</td>
</tr>
<tr>
<td></td>
<td>mmWave Studio to visualize object range/velocity/angle</td>
</tr>
<tr>
<td></td>
<td>Environment: DFP and mmWave Studio</td>
</tr>
<tr>
<td>AWR1243 + TDA3x</td>
<td>Enables radar algorithm and MRR/LRR application development on TDA3x</td>
</tr>
<tr>
<td></td>
<td>Enables vehicle validation/demonstration</td>
</tr>
<tr>
<td></td>
<td>Environment: DFP and TDA3x Radar SDK</td>
</tr>
<tr>
<td>AWR1x sensor module</td>
<td>Enables radar algorithm and proximity/SRR application development on AWR1443/AWR1642</td>
</tr>
<tr>
<td>AWR1x starter kit</td>
<td>Enables vehicle validation/demonstration</td>
</tr>
</tbody>
</table>

- **AWR1642-ODS EVM**: 85 x 65mm
- **AWR1243 + TDA3x**: 34 x 38mm
Short Range Radar Reference Design Using AWR1642 EVM: TIDEP-0092

Features

- Today:
 - Single chip solution with DSP integration and 1.5MB of on chip RAM for application programming.
 - Detected cloud point/objects up to 80m sent over UART interface to a PC for visualization using mmWave SDK
 - Clustering & Tracking of objects up to 100m+ at 40cm resolution, +/-60 deg FOV
 - Velocity resolution algorithm
 - Better detections and minimum memory configuration
 - Stream object data over Ethernet via a data capture card
 - Occupancy grid detection

Tools & Resources

- TI Design Link:
- Design Files: Schematics, BOM, Gerbers
- Software:

Benefits

- Single Chip solution with DSP integration excluding dependence on external processor.
- Small form factor and low power.
- High spatial and velocity resolution at 77GHz
- Cost optimized BOM
- Reference processing chain and higher layer algorithms

Target Applications

- Blind Spot detection
- Lane Change assistance
- Cross Traffic alert
- Parking Assistance

Device Documents

- www.ti.com/product/AWR1642

AWR1642

Data Capture Card

Ethernet
Automotive 77GHz Radar Module Reference Design: TIDA-01570

50mm x 71mm

TIDA-01570 block diagram

http://www.ti.com/tool/TIDA-01570
Corner Radar Using Single Chip Radar Sensor AWR1843

Key Features

- Single chip drives smallest form factor and lowest cost sensor
 - World’s first RFCMOS single chip sensor already in production, enabling processing at the edge
- High precision and accurate detection up to 150m
 - Ultra-wide bandwidth enables separation of objects as close as 4cm
 - Detection of 200+ objects with multi-mode
- mmWave-SDK, reference designs and system level learnings enable faster TTM
 - Safety monitoring, device calibration, optimized power architecture, reference algorithms
Enabling Level2+ automation with high performance cascade

77 GHz MMIC
MCU

Today
Resolution in 10s of m
Coarse Doppler resolution
100 km/h relative velocity

5cm resolution
Low Doppler ambiguity
300km/h relative velocity

High Performance LRR

+ beam steering
< 1° angular resolution

Curbs/Overhanging objects
Overhead bridges/tunnels
Dense urban scenarios

LRR

AWR1243
TDA3x

CORNER/MRR

4x angular resolution

AWR1243
TDA3x/
TDA2x

AWR1243
TDA2x

Texas Instruments
Adjacent Markets

Many sensing applications in and around car

Customer Value
- Accurate
- Easy
- Scalable

Collaborator Value
- Small modules
- Geographic advantage

Secondary Benefits
- Low power
- DSP programmable and reference designs

1 Hardware and Software platform
Key market segments

Obstacle Detection Sensor
- Car/Door Openers
- Park Assistance
- Suspension control
- Detection of ice/water on road

Vehicle Occupant Detection
- Child Left behind
- Intrusion detection
- Occupant classification (adult or child) for air bag deployment

Driver Vital Sign Monitoring
- Driver/Passenger Heart rate
- Driver sleep state detection
- Passenger ill/pass out

Swipe/Kick to open
- Kick to open tailgate
- HMI screen change
- Knob control
- Panes open/close
Near range 3D obstacle detection (Body & Chassis)

- Sense obstacle in the vicinity of car door to avoid collision and damage
- Single chip and small form factor that can go even "inside" a door-handle OR side-mirror OR door-cladding – Scalable to multiple locations
- Works under bright sunlight, pitch darkness, snow, fog
- Detection in elevation and azimuth directions with sub mm range accuracy
- Offers more range than any comparable sensing technology
- Easy algorithm implementation on single chip

Why 77GHz radar
Obstacle detection using AWR1642BOOST-ODS

Features
- Near range 3D obstacle detection
- Single chip solution with DSP integration and 1.5MB of on chip RAM for application programming.
- Parameters
 - Range: 4 cm - 15m
 - Resolution: 4 cm
 - FOV: +/-80 deg Azimuth, +/-80 deg Elevation

Target Applications
- Automotive
 - Obstacle detection around Car door/trunk
- Parking Assist

Benefits
- TI
 - Accurate, Low power single chip sensor for near range 3D obstacle detection applications against existing solutions

Customer Collateral
- HW/SW reference to jump start on the system design
- 3D Obstacle detection and elevation algorithm reference
- Processing chain reference

Tools & Resources
- Tool folder link
 EVM page available and code on TI Resource explorer
 Early software available for evaluation now
- Device datasheets links:
 - AWR1642BOOST-ODS – Available to order
Vehicle Occupant Detection Reference Design: TIDEP-01001

http://www.ti.com/tool/TIDEP-01001
TI Training – training.ti.com
Welcome to Resource Explorer
Examples, libraries, executables and documentation for your device and development board

Are you new to Resource Explorer?
Try the Quick Tour to help you navigate Resource Explorer.