Getting Best Performance From Your GSPS and RF Sampling ADC Designs

Jim Brinkhurst (Product Applications, High Speed Converters)
Detailed agenda

• Matching Networks for GSPS and RF Sampling ADC inputs
 – Characteristics of GSPS and RF Sampling ADC inputs
 – Types of matching networks
 – Methods to determine the appropriate matching network
 – High frequency board design guidelines
 – Verification

• Clocking Requirements for GSPS and RF Sampling ADCs
 – Impacts of phase noise/jitter on ADC performance
 – Sources of phase noise/jitter
 – Basic clock selection criteria
 – Methods to minimize phase noise/jitter
MATCHING NETWORKS FOR GSPS AND RF SAMPLING ADC INPUTS
GSPS ADC inputs – ADC12DXX00RF
GSPS ADC inputs – ADC12J4000
RF Sampling ADC inputs – ADC32RF45
What is impedance matching?

• Signal sources will have a specific output impedance
• Loads or receivers will have a corresponding input impedance
• Systems have matched impedance when source and load impedances are the same
ADC input impedance – Smith Chart

- Smith Chart – Complex Impedance
- Example has significant impedance change at higher frequencies

freq (10.00MHz to 2.000GHz)
m1
freq=186.0MHz
S(1,1)=0.451 / -71.991
impedance = Z0 * (0.862 - j0.928)
m2
freq=370.0MHz
S(1,1)=0.619 / -105.178
impedance = Z0 * (0.362 - j0.700)
ADC input impedance – S-parameters

- S11 – Input return loss
- This example has better high frequency performance
Why is impedance matching important?

• Optimum (most efficient) power transfer occurs when source and load impedances are matched

• For pure resistance this means $R_S = R_L$

• For complex impedance this means the load is the complex conjugate of the source impedance, or: $Z_L = Z_S^*$

• For complex conjugates the real portions are equal, and the complex portions are equal in magnitude and opposite in sign:
Impedance matching

• Source and load devices will have impedances that are fixed by design
• The impedance matching exercise involves designing a network which, in combination with the existing load impedance, provides a matching load to the source

\[Z_{IN} = Z_S^* \]
Types of matching networks

1. LC Pi
2. LC Tee
3. TRL ¼ Wave
4. TRL Single/Double Stub
5. LC Bandpass
6. LC Pseudo Lowpass
7. TRL Pseudo Lowpass
8. TRL Stepped Impedance
9. Custom Network

• 1-4 for narrow bandwidths
• 5-8 for wideband matching
Determining the appropriate matching network

• Software modeling
 – Keysight EEsof Genesys
 • http://edadocs.software.keysight.com/display/genesys2009/Match
 • http://www.keysight.com/main/eventDetail.jspx?cc=US&lc=eng&ckey=2589956&nid=-33396.0.00&id=2589956
 • http://www.keysight.com/main/redirector.jspx?ckey=2655545&nid=-33396.0.00&action=ref&lc=eng&cname=AGILENT_EDITORIAL&cc=US

 – Mathworks
PCB LAYOUT BEST PRACTICES
Impedance controlled routing – best practices

- Differential Pairs 100 ohm
- Single Ended 50 ohm
- Minimize discontinuities in differential and SE impedance
- Minimize other signal impairments
- High frequency signal paths (ADC inputs, DAC outputs)
- High speed data links (LVDS, JESD204B, PCIe, etc.)
Differential pairs – stripline coupling

• E1 – Tightly Coupled – Coupling between P and N is key to 100 ohm differential impedance. Serpentines in P or N for length matching alter differential impedance and cause a discontinuity

• A – Loosely Coupled – Reduced coupling between P and N means impedance is more like two 50 ohm traces than a 100 ohm differential pair. Serpentines in one trace for length matching have small effect on diff impedance
Differential pairs - spacing

• E1 – Tight pair to pair spacing causes increased crosstalk

• A – Wide pair to pair spacing minimizes crosstalk
Ground plane details – component pads

• Add cutouts under component pads to maintain 50 ohm SE impedance at those locations
 – IC pads
 – Connector pads (SMA, etc.)
Component Pads – No ground voids
Component Pads – With ground voids
Ground plane details – ground voids

- Ensure good continuous ground plane under high speed traces
- Move or eliminate signal or ground vias near high speed traces to keep related ground voids away
Minimizing impedance discontinuities

• Corners
 – Use 45 or smooth curves for high frequency signals

• Layer changes – vias
 – Minimize stubs
 – Provide adjacent GND tie vias
 – Adequate GND pullback from signal vias
Corners

• For high frequency signals avoid 90 degree corners
• Use 45 degree (up to a 1-2 GHz) or radiused curves (above 2 GHz)
Layer change vias – avoid stubs

- Good - Via top (L1) to bottom (L12) has no stubs
- Bad - Via from top to L3 has large via extending to bottom of multi-layer board
 - Avoid this, or if absolutely necessary then back drilling, blind or buried vias can be used
Layer change vias – ground-tie reference vias

- Signal transitions from L1 to L12
- L1 signal is referenced to GND on L2, L12 signal is referenced to L11
- Image current in reference planes needs a low impedance path
- L2 and L11 ground planes must be tied together near where the signal via is located
PCB stackup – dielectrics and weaves

- Select low loss high frequency substrates for high frequency trace needs
 - Rogers 4350B
 - Panasonic Megtron 6
 - Use high frequency materials only on needed layers to reduce cost

<table>
<thead>
<tr>
<th>Material Group</th>
<th>Vendor Specific</th>
<th>FR4 Relative Cost Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 Tg FR4 (Baseline)</td>
<td>Nelco 4000-6</td>
<td>1</td>
</tr>
<tr>
<td>High Tg / Reliability-Filled</td>
<td>Isola 370HR</td>
<td>1.1</td>
</tr>
<tr>
<td>High Speed / Low Loss</td>
<td>Isola FR408</td>
<td>1.8</td>
</tr>
<tr>
<td>High Speed / Low Loss</td>
<td>Nelco 4000-13 EP</td>
<td>2.1</td>
</tr>
<tr>
<td>High Speed / Very Low Loss</td>
<td>Nelco 4000-13 EP SI</td>
<td>3.2</td>
</tr>
<tr>
<td>High Frequency</td>
<td>Arlon 85N</td>
<td>4</td>
</tr>
<tr>
<td>High Frequency</td>
<td>IS680-3.45</td>
<td>4.2</td>
</tr>
<tr>
<td>High Frequency</td>
<td>Megtron 6</td>
<td>5</td>
</tr>
<tr>
<td>High Frequency</td>
<td>Rogers 4350B</td>
<td>5.6</td>
</tr>
</tbody>
</table>
PCB stackup – dielectrics and weaves

- Use high frequency materials only on needed layers to reduce cost
- Use tighter or flattened glass fiber weave for critical traces/layers
- Dielectric constant is more uniform

Figure 3. Different Styles of Fiberglass Weaves
Post-layout simulation

• Modeling of TX, circuit board channel and RX
• Common tools are ADS, HFSS
• Modeled parameters
 – Return loss – reflection of transmitted signal as a function of frequency
 – Insertion loss – attenuation of transmitted signal as a function of frequency
 – TDR – reflection of transmitted pulse, gives indication of impedance discontinuities along the channel
Return loss

Return Loss of DA1

m5

freq=6.400 GHz
dB(SDD55)=-22.735
Insertion loss

Insertion Loss of DA1

\[m6 \quad f_{req}=6.400 \text{GHz} \quad dB(SDD65)=-1.524 \]
TDR of DA1

Impedance_{DA1}

time, nsec
Verification - measurements

• Use test equipment to measure eye quality
 – Need good connector or probe access to signals
Verification - measurements

- Eye diagram analysis
 - Send adequately random data on link (PRBSxx)
 - Use eye-scan feature of data receiver to reconstruct RX eye
Verification – optimize, update measurements

• Optional – Compensate for channel impairments
 – Use TX de-emphasis or pre-emphasis
 – Use RX equalization
 – Second plot below shows results with increased TX pre-emphasis
CLOCKING REQUIREMENTS FOR GSPS AND RF SAMPLING ADCS
ADC general clocking requirements

• Amplitude Requirements for CLK+/-
 – 0.4 to 2.0 Vpeak-to-peak differential (equivalent to 0.2V to 1.0V V_{ID})

• Jitter Requirements
 – Jitter must be low enough to not limit SNR performance of ADC at desired input frequency
 – See standard relationship between jitter and ENOB in AN-1791

\[T_{j\text{rms}} = (\frac{V_{IN(p-p)}}{V_{INFSR}}) \times \left(\frac{1}{(2^{(N+1)} \times \pi \times f_{in}}) \right) \]

• Total jitter is RMS sum of ADC inherent aperture jitter and clock jitter

• Clean PLL/VCO based sources recommended
 – LMX2582, LMX2594, LMK048xx, etc.

• Lab sources, issues and mitigation
 – Good quality RF generators are low jitter but relatively high in harmonics
 – Harmonics should be attenuated with a bandpass or lowpass filter

Texas Instruments
Impacts of jitter on ADC performance

Allowed Jitter (fs rms) vs Input Frequency (MHz)

- 8-bit
- 9-bit
- 10-bit
- 12-bit
- 14-bit
- 16-bit
Clock source selection

- Minimize jitter (phase noise) at clock source
 - Choose appropriate clock source
 - Use https://webench.ti.com, optimize for best jitter
Methods to minimize jitter

• Ensure board routing does not add jitter to clock path
 – Keep clock signals away from other dynamic/noisy signals
 – Avoid parallel routing with digital, other clocks, signals, etc.
 – Use multi-layer board designs to maximize isolation

• Trace Routing
 – 50 single ended, 100 Ohm differential

• Minimize distortion on clock routing
 – Avoid impedance discontinuities
 – Avoid sharp angles, use 45 degree or smooth curves
Clock delivery

• Clock source output mode and termination
 – Need adequate signal amplitude and slew rate
 – Need to properly terminate to signal path

• ADC and DAC clock input termination
 – Many ADCs have 100 Ohm on-chip termination

• AC Coupling
 – ADC differential clock inputs must be AC coupled

• Single Ended to Differential Conversion
 – Some clock sources are SE and must be converted to differential
 – BALUN transformer is most common way to do this
 – Active clock distribution devices can also perform this function