Implementation and Design Considerations of High Voltage Gate Drivers
Richard Herring, Application Engineer
What will I get out of this session?

• Purpose:
 • This session presents the high voltage half bridge drivers architecture and operation details, and common applications well suited for these drivers. Guidance for designing with high voltage half bridge drivers including bias considerations, start-up, sequencing and other operation considerations are discussed. The cause of some common concerns or issues in high voltage power trains is presented, and recommendations to mitigate these issues. TI high voltage half bridge drivers attributes and features help overcome the challenges of a high noise power train environment.

• Part numbers mentioned:
 • UCC27710
 • UCC27712
 • UCC27714

• Relevant End Equipments:
 • Motor Drive
 • Appliance
 • Inductive Heating
 • HVAC
AGENDA

- TI high voltage driver portfolio summary
- High voltage half-bridge gate driver architecture
- High voltage half-bridge gate driver applications
- High voltage half-bridge gate driver design considerations
 - Bias and start up
 - Negative voltage spikes/ringing on HS
 - False triggering of driver output
 - Driver input noise
- Summary
Driver Portfolio Summary

Low Side
- **UCC2732x/42x**
- **UCC2752x**
- **UCC2751x/53x**
- Higher VDD for more headroom and robustness
- Low pulse transmission distortion

Half-Bridge
- **TPS28225**
- **UCC2720x/A**
- **LM510X**
- Low power dissipation and lower switching loss
- Low pulse transmission distortion

High Voltage
- **UCC27712**
- **UCC27714**
- **UCC27710**
- Higher power density
- Best in class dynamic characteristics
- Offers design flexibility & robustness
- Replace bulky gate drive transformers

Isolated
- **UCC21520**
- **UCC53XX**
- Universal drive capability
- Allow best in class efficiency
- High degree of isolation
- Best in class reliability and robustness
- Highest level of flexibility

SiC
- **UCC27531**
- **UCC21521C**
- High efficiency
- Small form factor
- User-friendly interface
- Optimized pinout for easy PCB layout

<table>
<thead>
<tr>
<th>Type</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC</td>
<td>TIDA-00779, TIDA-00443, TIDA-00447</td>
</tr>
<tr>
<td>AC/DC Power</td>
<td>PMP-11064</td>
</tr>
<tr>
<td>DC/DC Converter</td>
<td>BIDIR, TIDA-00705</td>
</tr>
<tr>
<td>Solar Micro Inverter</td>
<td>SOLAR</td>
</tr>
<tr>
<td>Flyback</td>
<td>PMP10035</td>
</tr>
<tr>
<td>LED Control</td>
<td>Auto_LED</td>
</tr>
<tr>
<td>DC/DC Converter</td>
<td>PMP4320A</td>
</tr>
<tr>
<td>Module Power</td>
<td>PMP7246</td>
</tr>
<tr>
<td>BLDC Motors</td>
<td>TIDA-00472</td>
</tr>
<tr>
<td>Battery Chargers</td>
<td>TIDA-00355</td>
</tr>
<tr>
<td>AC/DC Power</td>
<td>PMP11282</td>
</tr>
<tr>
<td>LLC Resonant Converter</td>
<td>PMP10949</td>
</tr>
</tbody>
</table>

UCC27521CE VM-286
High Voltage High-Side Low Side Driver Architecture

UCC27714, UCC27712, UCC27710
Applications: Inductive Heater

AC 85~265V → EMI Filter → PFC (Power Factor Correction) → 400V\textsubscript{DC} → DC-AC Inverter → Heat Coil

High Voltage Half bridge driver

\[V_{\text{DC-Link}} = 400V \]
Applications: Motor Drive

- EMI Filter
- PFC (Power Factor Correction)
- 400V_{DC}
- DC-AC VFD

Diagram:
- V_{DC-Link} 400V
- High Voltage Half bridge driver

High Voltage Half bridge driver
Question #2: During start up of the bridge power train, what would cause the low side to switch before the high side?

- A) Input signals not present or below threshold?
- B) Different delays in the driver IC?
- C) Timing of the bias supplies to the IC?
- D) Other?
Design Considerations: Half-Bridge Driver With Boot-Strap Bias

- High side bias bootstrap from VDD
- HB capacitor charges when HS goes low
- Used in many applications, usually no concerns

- VDD and VHB both have UVLO delays
- HS must go low for HB to charge. In most cases LO must switch to charge HB cap

![Diagram of UCC27712 IC with PWM Controller and Load](image)
Level Shifter Implementation

- High voltage half bridge drivers have edge triggered level shifter.
 - Low cost high voltage level shifter
 - Reduces power dissipation
- TI provides robust level shifter function
 - 70ns pulse and 40ns edge pulse filters for noise immunity
 - 6mA pulse trigger current for robust dV/dt induced current immunity
Level Shifter Sequence Considerations

- Edge triggered level shifter.
 - High side HB-HS voltage must be above UVLO
 - There is a UVLO delay
- HI rising edge generates turn on pulse
 - HB must be above UVLO and beyond delay on rising edge of HI.

HB UVLO and delay before HI rising

HB UVLO and delay after HI rising
Question #3: What could cause high voltage spikes and/or ringing in the power train switch node?

- A) Power device parasitics?
- B) Poor board layout?
- C) Power device switching edges too fast?
- D) Other?
Design Considerations: Negative Voltage on HS

- Question: Do you see significant negative voltage on the power train switch node?

- Why doesn’t the low side FET body diode limit the voltage?
Negative voltage on HS: \(\text{di/dt} \) Effect on Driver

- What are possible results of large HS negative spike?
 - Driver malfunction (i.e. faulty input pulse translation)
 - \(D_{\text{BOOT}} \) over current
 - Overvoltage \(V_{\text{HB-HS}} \)

How can I reduce these negative spikes?

![Diagram showing circuit components and voltage relationships.]

- Driver IC
- Noise Canceller
- \(V_{CC} \)
- \(V_{GG1} \)
- \(V_{HV} \)
- \(Q1 \)
- \(Q2 \)
- \(C_{\text{Boot}} \)
- \(D_{\text{Boot}} \)

![Graph showing negative voltage on HS over time.]

- Negative Voltage Capability (V)
- UCC27712 NTDOSA

![Graph showing a negative voltage spike and di/dt effects.]

- \(L_{SS} \) : di/dt

![Graph showing negative voltage spike and di/dt effects over time.]

Texas Instruments
Negative HS spikes: Reduce the parasitic L

- Most of the parasitic inductance is from the layout, not device leads (typically)
- Layout of HB FETs can be tight.
- What about path to HV bulk cap?…

Add HV ceramic caps
Design Considerations: Driver Input Noise

- dV/dt coupling through parasitic capacitance
- Switching transition HF noise on driver inputs
- Ground bounce from control to power stage
Separate Power Ground noise

Controller

PWM1

PWM2

VSS

VSS

PWM1

PWM2

VSS

VSS

VSS

HI

LI

COM

COM

VCC

VCC

R_{Boot}

D_{Boot}

\text{High Side Level Shift}

\text{Noise Canceller}

\text{UCC27712}
IC Features to Mitigate Input Noise

- Minimum Input Pulse Rejection
 - UCC27712: 25ns
 - UCC27714: 40ns
 - UCC27710: 40ns

- Input Interlock and Deadtime
 - Prevents both outputs from being on with overlapping inputs
 - UCC27712, UCC27710: 150ns deadtime
Control Power Ground noise –PCB

- R/C filter on LI HI pins
- HF impedance (small inductance) RTN from FET source and COM
- Ceramic HF capacitors on VIN to GND. Previous suggestion on for HS negative voltage

Add HV ceramic caps
SUMMARY

- High voltage half-bridge gate driver architecture is a cost effective solution well suited for many applications.
- Design considerations include startup sequencing, power train ringing and control noise.
- TI drivers incorporate features and offer transient voltage capabilities important in high noise environments.
- Mitigating noise and voltage spikes in the application is easily achieved in many applications.