Op Amp Technology Overview

Developed by Art Kay, Thomas Kuehl, and Tim Green
Presented by Ian Williams
Precision Analog – Op Amps
Bipolar vs. CMOS / JFET

• Transistor technologies
 – Bipolar, CMOS and JFET

• Vos and Ib and Drift
 – Laser Trim, Package Trim, and Zero Drift

• Noise
 – JFET, MOSFET, and Bipolar (1/f noise)

• Input Structures
 – Rail-to-Rail, Charge Pump
 – Chopper (Zero-Drift)
 • Chopper Noise Sources
 – Input crossover distortion
 – Input back-to-back diodes

• Output Structures – The “Claw Curve”
 – Rail-to-Rail vs. Non Rail-to-Rail
 – Open Loop Output Impedance, Zo

• Bandwidth

• Summary
Bipolar, CMOS, JFET (Op Amp input device structures)

1) **Current Controlled Device**
2) “Current Controlled Current Source”
3) \(I_c = I_b \times hfe \)
4) \(I_b = 0A \) turns bipolar off
5) Base is op amp +/- input
6) Highest Op Amp input current

1) **Voltage Controlled Device**
2) “Voltage Controlled Resistor”
3) \(V_{gs} > 2V \) controls \(R_{ds_on} \)
4) \(V_{gs} = 0V \) turns MOSFET off
5) Gate is op amp +/- input
6) Very Low Op Amp input current

1) **Voltage Controlled Device**
2) “Voltage Controlled Resistor”
3) \(0V < V_{gs} < -2V \) controls \(R_{ds_on} \)
4) \(V_{gs} < -2V \) turns JFET off
5) Gate is op amp +/- input
6) Very Low Op Amp input current
Vos & Ib: Model and Hand Calculations

- Voltage offset adds a dc error to Vout
- The offset contributed is unique to each device

\[R_{eq} = \frac{R_f \cdot R_1}{R_f + R_1} \]

\[G_n = \frac{R_f}{R_1} + 1 \]

\[V_{o_vos} = V_{os} \cdot G_n \]

\[V_{o_ib+} = I_b \cdot R_s \cdot G_n \]

\[V_{o_ib-} = I_b \cdot R_{eq} \cdot G_n \]

\[V_{o_os_ib} = V_{o_vos} + V_{o_ib+} + V_{o_ib-} \]
What’s inside the Amplifier – Bipolar vs. CMOS

Bipolar input op amp

CMOS input op amp

Trim these resistors for Vos & Vos drift for CMOS

Trim these resistors for Vos & Vos drift for Bipolar

Vin1

R1

R2

Cc

Unity Gain

Vcc

Q1

Q2

R_{os1}

R_{os2}

Vin2

IS1

Vout

Vcc

R1

R2

Q1

Q2

R_{os1}

R_{os2}

Vin1

IS1

Vin2

I_{b2}
Bipolar and CMOS

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA211</td>
<td>Bipolar</td>
<td>RRO</td>
<td>4.5 - 36 V</td>
<td>3.6 mA</td>
<td>60 uV</td>
<td>0.35 uV/°C</td>
<td>60 nA</td>
<td>1.1 nV/√Hz</td>
<td>45 MHz</td>
<td>27 V/us</td>
</tr>
<tr>
<td>OPA350</td>
<td>CMOS</td>
<td>RRIO</td>
<td>2.7 - 5.5 V</td>
<td>5.2 mA</td>
<td>150 uV</td>
<td>4 uV/°C</td>
<td>0.5 pA</td>
<td>16 nV/√Hz</td>
<td>38 MHz</td>
<td>22 V/us</td>
</tr>
</tbody>
</table>

- OPA2x11 - Ultra low Noise, low power, precision op amp
 - Ideal for driving high-precision 16-bit ADCs or buffering the output of high-resolution digital-to-analog converters DACs
- OPAx350 High-Speed, Single-Supply, Rail-to-Rail I/O
 - High-performance ADC driver, very high C_{Load} drive capability
Inherent Drift of Bipolar vs. CMOS

- Drift is proportional to offset
- When V_{os} trimmed to zero, drift is near zero.
- Simple one step trim: just trim offset
- Frequently more curvature than bipolar
- When V_{os} trimmed to zero, drift remains.
- More complex two part trim: drift first, then offset
- Offset and drift trims interact, difficult to optimize both
Laser Trim – What does it look like?

- Bipolar, CMOS, JFET can be used
 - Only way to trim bipolar
- Trimmed in wafer form before package
- Laser makes narrow cuts in resistor
- Increases resistance continuously
- Circuit can be active, but laser may disturb circuit function—requires cutting in bursts (long test time)
- Generally each trim has a pair of resistors for bidirectional trim
Bipolar vs. CMOS
Op amps that utilize thin-film resistor laser trimming for improved offset and drift

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1612</td>
<td>Bipolar</td>
<td>Out</td>
<td>4.5 – 36 V</td>
<td>3.6 mA</td>
<td>100 uV</td>
<td>1 uV/°C</td>
<td>60 nA</td>
<td>1.1 nV/√Hz</td>
<td>40 MHz</td>
<td>27 V/us</td>
</tr>
<tr>
<td>OPA320S</td>
<td>LV CMOS</td>
<td>RRIO</td>
<td>1.8 – 5.5 V</td>
<td>1.5 mA</td>
<td>40 uV</td>
<td>1.5 uV/°C</td>
<td>0.2 pA</td>
<td>8.5 nV/√Hz</td>
<td>20 MHz</td>
<td>10 V/us</td>
</tr>
</tbody>
</table>

• **OPA1612 - SoundPlus™ High-Performance, Bipolar-Input Audio Op Amp**
 - Achieves very low noise density with an ultralow distortion of 0.000015% at 1 kHz.
 - Rail-to-rail output swing to within 600 mV with a 2-kΩ load

• **OPA320S - 20-MHz, Low-Noise, RRl/O, Low operating current, with shutdown**
 - A combination of very low noise, high gain-bandwidth, and fast slew make it ideal for signal conditioning and sensor amplification requiring high gain
Package level electronic trim, e-trim™

- CMOS op amps only due to digital circuitry requirements
- Standard pinout
 - Trim data is entered through output current load
- Blow and set internal fuses
- Disable trim mechanism after the trim is completed
 - No customer access to trim function
- Programmed fuses are read at each power-on
Model Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA376</td>
<td>LV CMOS</td>
<td>RRIO</td>
<td>2.2 – 5.5 V</td>
<td>760 uA</td>
<td>5 uV</td>
<td>0.26 uV/°C</td>
<td>0.2 pA</td>
<td>7.5 nV/√Hz</td>
<td>5.5 MHz</td>
<td>2 V/us</td>
</tr>
<tr>
<td>OPA192</td>
<td>HV CMOS</td>
<td>RRIO</td>
<td>8 – 36 V</td>
<td>1 mA</td>
<td>5 uV</td>
<td>0.1 uV/°C</td>
<td>5 pA</td>
<td>5.5 nV/√Hz</td>
<td>10 MHz</td>
<td>20 V/us</td>
</tr>
</tbody>
</table>

- **OPA376** – Precision, Low-noise, Low offset, Low quiescent current
 - Well-suited for driving SAR ADCs as well as 24-bit and higher resolution converters
- **OPA192** - Precision, 36 V, Low offset, Fast slewing
 - differential input-voltage range to the supply rail
 - high output current (±65 mA)
What’s inside the Amplifier – Bipolar vs. CMOS

Bipolar input op amp

CMOS input op amp

Ib from diode leakage Ib ≈ ±1pA

Ib from base current ≈ 100nA

Bipolar input does have ESD cells, but Ib >> I_{leak}
Bipolar - Bias Current Cancellation

Bipolar IB

<table>
<thead>
<tr>
<th>Uncancelled</th>
<th>100nA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancelled</td>
<td>1nA</td>
</tr>
</tbody>
</table>
Bipolar - Bias Current Cancellation

Cancellation vs non-cancellation

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA209</td>
<td>Bipolar with Ib cancel</td>
<td>RRO</td>
<td>4.5 - 36 V</td>
<td>2.2 mA</td>
<td>35 uV</td>
<td>0.05 uV/°C</td>
<td>1 nA typ 4.5 nA max</td>
<td>2.2 nV/√Hz</td>
<td>18 MHz</td>
<td>6.4 V/us</td>
</tr>
<tr>
<td>OPA211</td>
<td>Bipolar w/o Ib cancel</td>
<td>RRO</td>
<td>4.5 - 36 V</td>
<td>3.6 mA</td>
<td>60 uV</td>
<td>0.35 uV/°C</td>
<td>60 nA typ 175 nA max</td>
<td>1.1 nV/√Hz</td>
<td>45 MHz</td>
<td>27 V/us</td>
</tr>
</tbody>
</table>

- OPA209 – 36 V, low power, noise, offset, drift and input bias current
 - Suitable for fast, high-precision applications. Has fast settling time to 16-bit accuracy
- OPA2x11 - Ultra low Noise, low power, precision op amp
 - Ideal for driving high-precision 16-bit ADCs, or buffering the output of high-resolution DACs
Bipolar vs. CMOS bias current drift (Ib vs Temp)

Bipolar amplifier:
In this case you see a dramatic increase in bias current at 75 °C.

CMOS amplifier:
In this case you see a dramatic increase in bias current at 25 °C. Note the logarithmic graph, which doubles every 10 °C.
CMOS: $I_{n_{350}} = 4fA/\sqrt{\text{Hz}}$

JFET: $I_{n_{827}} = 2.2fA/\sqrt{\text{Hz}}$

Bipolar: $I_{n_{277}} = 200fA/\sqrt{\text{Hz}}$

Note: CMOS current noise has minimal $1/f$, but it may be significant in bipolar
JFET, Bipolar, and CMOS Noise

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA827</td>
<td>JFET + Bipolar</td>
<td>No</td>
<td>8 – 36 V</td>
<td>4.8 mA</td>
<td>75 uV</td>
<td>0.1 uV/°C</td>
<td>3 pA</td>
<td>4 nV/√Hz</td>
<td>22 MHz</td>
<td>28 V/us</td>
</tr>
<tr>
<td>OPA227</td>
<td>Bipolar</td>
<td>No</td>
<td>10 – 36 V</td>
<td>3.7 mA</td>
<td>10 uV</td>
<td>0.3 uV/°C</td>
<td>2.5 nA</td>
<td>3 nV/√Hz</td>
<td>8 MHz</td>
<td>2.3 V/us</td>
</tr>
<tr>
<td>OPA350</td>
<td>CMOS</td>
<td>RRIO</td>
<td>2.7 – 5.5 V</td>
<td>5.2 mA</td>
<td>150 uV</td>
<td>4 uV/°C</td>
<td>0.5 pA</td>
<td>16 nV/√Hz</td>
<td>38 MHz</td>
<td>22 V/us</td>
</tr>
</tbody>
</table>

- **OPA827 - Low-Noise, High-Precision, JFET-Input**
 - Precision 16-bit to 18-bit mixed signal systems, transimpedance amplifiers

- **OPA227 - High Precision, Low Noise**
 - Ideal for applications requiring both AC and precision DC performance

- **OPAx350 High-Speed, Single-Supply, Rail-to-Rail I/O**
 - High-performance ADC driver, very high C_{Load} drive capability
OPA703 Complementary CMOS – Rail-to-Rail

PARAMETER

<table>
<thead>
<tr>
<th>INPUT VOLTAGE RANGE</th>
<th>CONDITION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-Mode Voltage Range</td>
<td>V_{CM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>V_{CM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>over Temperature</td>
<td>$V_S = \pm 5V$, $(V^-) - 0.3V < V_{CM} < (V^+) + 0.3V$</td>
<td>70</td>
<td>90</td>
<td>(V^+) + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>over Temperature</td>
<td>$V_S = \pm 5V$, $(V^-) < V_{CM} < (V^+)$</td>
<td>68</td>
<td>96</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>over Temperature</td>
<td>$V_S = \pm 5V$, $(V^-) - 0.3V < V_{CM} < (V^+) - 2V$</td>
<td>80</td>
<td>96</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>over Temperature</td>
<td>$V_S = \pm 5V$, $(V^-) < V_{CM} < (V^+) - 2V$</td>
<td>74</td>
<td>96</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

Diagram

Common Mode Voltage (V)
- 200 V
- 100 V
- 0 V
- -100 V
- -200 V
- -300 V

Input Offset Voltage (μV)
- 200 µV
- 100 µV
- 0 µV
- -100 µV
- -200 µV
- -300 µV

Graph
- Input Offset Voltage (µV) vs. Common Mode Voltage (V)
Complementary CMOS – Rail-to-Rail

Abrupt offset change at input P-ch/ N-ch switchover point

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA703</td>
<td>12 V CMOS</td>
<td>RRIO</td>
<td>4 - 12 V</td>
<td>160 uA</td>
<td>35 uV</td>
<td>4 uV/°C</td>
<td>1 pA</td>
<td>45 nV/√Hz</td>
<td>1 MHz</td>
<td>0.6 V/us</td>
</tr>
<tr>
<td>OPA314</td>
<td>LV CMOS</td>
<td>RRIO</td>
<td>1.8 – 5.5 V</td>
<td>150 uA</td>
<td>60 uV</td>
<td>1 uV/°C</td>
<td>0.4 pA</td>
<td>14 nV/√Hz</td>
<td>2.7 MHz</td>
<td>1.5 V/us</td>
</tr>
</tbody>
</table>

Graphs:

- **OPA703** 0 to +5 V input, $V_s \pm 5$ V
- **OPA314** ±2.75 V input, $V_s \pm 2.75$ V
Input Crossover Distortion

Vout vs. Time

- **Vout** (Volts) vs. **time** (ms)

Vout vs. Time (Zoomed In)

- **Vout** (Volts) vs. **time** (ms)
- Green line: Vout Ideal
- Red line: Vout Crossover

Input Offset Voltage

- **Input Offset Voltage (mV)** vs. **time** (ms)

Common Mode Voltage

- **Common Mode Voltage (V)** vs. **time** (ms)

![Circuit Diagram](image-url)
OPA365 MOSFET Charge Pump – Rail-to-Rail

\[V_{\text{OUT}} = +V_S + 1.8V \]

- Uses charge pump to raise \(V^+ \) rail and overcome \(V_{\text{sat}} \) + \(V_{\text{gs}} \) of input PMOS FETs
- Charge pump switches at 10 MHz which is within op amp 50 MHz GBW
- Pump design is patented and has very low ripple
- Charge pump noise is small relative to broadband noise
MOSFET Charge Pump – Rail-to-Rail
Eliminates input stage crossover distortion

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA365</td>
<td>LV CMOS</td>
<td>RRIO</td>
<td>2.2 – 5.5 V</td>
<td>4.6 mA</td>
<td>100 uV</td>
<td>1 uV/°C</td>
<td>0.2 pA</td>
<td>12 nV/√Hz</td>
<td>50 MHz</td>
<td>25 V/us</td>
</tr>
<tr>
<td>OPA322</td>
<td>LV CMOS</td>
<td>RRIO</td>
<td>1.8 – 5.5 V</td>
<td>1.5 mA</td>
<td>500 uV</td>
<td>1.5 uV/°C</td>
<td>0.2 pA</td>
<td>8.5 nV/√Hz</td>
<td>20 MHz</td>
<td>10 V/us</td>
</tr>
</tbody>
</table>

- **OPA365 – Wide bandwidth, Low-Distortion, High CMRR**
 - High performance optimized for low voltage, single-supply applications
- **OPA322 – Wide bandwidth, Low-Noise, Low current**
 - Optimized for low noise and wide bandwidth while requiring low quiescent current
“Chopper” and “Zero-Drift” CMOS Op Amps use complementary input P-ch/ N-ch concept with Digital Calibration for Offset Correction
Comparing Common Architectures vs. Chopper

<table>
<thead>
<tr>
<th>CMOS Vos/drift</th>
<th>Typ Vos (uV)</th>
<th>Typ Drift (uV/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrected</td>
<td>1000</td>
<td>5</td>
</tr>
<tr>
<td>Zero Drift</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>(chopper)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Trim</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Chopper Amplifying Vin

- Vin inverted at the input and output every other calibration cycle
- Overall signal path doesn’t see an inversion
Chopper Amplifying Vos

- Vos only inverted at output every other calibration cycle
- Offset translates to triangle wave
- Offset average is zero
- Sync Filter eliminates triangle wave

\[f = 125\text{kHz on OPA333} \]
Average = 0
Slope = \(\frac{V_{os} \cdot g_m}{C_c} \)
Chopper: A more complete diagram
Chopper Noise Sources and Ib

OPA188 IB – Chopper Calibration Feedthrough

![Graph showing chopper noise sources and Ib](image)

- **Ib(Average) = 160pA**
- **611ns**

OPA188 Noise Density vs. Frequency

- **No 1/f Noise**
- **Chopper Noise Feedthrough**
Chopper Op Amps

Chopper techniques provide low offset voltage and near zero-drift over time and temperature

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA333</td>
<td>LV CMOS</td>
<td>RRIO</td>
<td>1.8 – 5.5 V</td>
<td>17 uA</td>
<td>2 uV</td>
<td>0.02 uV/°C</td>
<td>70 pA</td>
<td>55 nV/√Hz</td>
<td>350 kHz</td>
<td>0.16 V/us</td>
</tr>
<tr>
<td>OPA188</td>
<td>HV CMOS</td>
<td>RRO</td>
<td>4- 36 V</td>
<td>425 uA</td>
<td>6 uV</td>
<td>0.03 uV/°C</td>
<td>160 pA</td>
<td>8.8 nV/√Hz</td>
<td>2 MHz</td>
<td>0.8 V/us</td>
</tr>
</tbody>
</table>

• OPA333 - 1.8 V, Precision, microPower
 – Provides excellent CMRR without the crossover associated with traditional complementary input stages

• OPA2188 – 36 V, Precision, Low-Noise, Rail-to-Rail Output
 – Offers very low offset and drift with high CMRR, PSRR, and AOL performance
Input Stage Back-to-Back Diodes

CMOS: May not be needed, Check Data Sheet.
JFET: May not be needed, Check Data Sheet.
Bipolar: Generally Required.

These diodes prevent overstress damage on input base to emitter junctions.

- Diodes can cause problems in multiplexed applications
- See TIPD151 for details
The diodes can turn on during slewing and cause very large I_b. Can be a significant problem in Mux applications (TIPD151).
Input Stage Back-to-Back Diodes
Op amps with differential input over-voltage protection

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA171</td>
<td>HV CMOS</td>
<td>RRO</td>
<td>2.7 - 36 V</td>
<td>475 uA</td>
<td>250 uV</td>
<td>0.3 uV/°C</td>
<td>8 pA</td>
<td>14 nV/√Hz</td>
<td>3 MHz</td>
<td>1.5 V/us</td>
</tr>
<tr>
<td>OPA1622</td>
<td>Bipolar</td>
<td>No</td>
<td>4 – 36 V</td>
<td>2.6 mA</td>
<td>100 uV</td>
<td>0.5 uV/°C</td>
<td>1.2 uA</td>
<td>2.8 nV/√Hz</td>
<td>8 MHz</td>
<td>10 V/us</td>
</tr>
</tbody>
</table>

- **OPAx171** - 36-V, Single-Supply, SOT553, General-Purpose Op Amps
 - single-supply, low-noise, low offset and drift, and low quiescent current
- **OPA1622** - SoundPlus™ High-Fidelity, Bipolar-Input, Audio Op Amp
 - very low noise density, with an ultralow THD+N of -119.2 dB at 1 kHz
 - drives a 32-Ω load at 100 mW output power
Classic Bipolar vs. Rail-to-Rail Output Stage

Classic Bipolar

$$V_{sat} + V_{be}$$

$$V_{OUT}$$

$$+V_S$$

$$-V_S$$

Rail-to-Rail

$$V_{sat} = 0.2V$$

$$-V_S$$

$$R_{LOAD}$$

CMOS

$$V_{sat} = 1mV \ldots 50mV$$

$$-V_S$$

Note: W/L sets Ron

$$V_{sat} = 0 \ldots 0.2V$$

$$R_{LOAD}$$

$$V_{sat} = 1mV \ldots 50mV$$
Classic Bipolar vs. Rail-to-Rail Output Stage

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Output design</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Output Swing</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA827</td>
<td>JFET + Bipolar</td>
<td>PNP/ NPN Emitter Followers</td>
<td>8 – 36 V</td>
<td>4.8 mA</td>
<td>75 uV</td>
<td>0.1 uV/°C</td>
<td>3 pA</td>
<td>(V-) + 3 V, (V+) – 3 V RL = 1 kΩ, Aol > 120 dB</td>
</tr>
<tr>
<td>OPA209</td>
<td>Bipolar</td>
<td>PNP/NPN Collectors</td>
<td>10 – 30 V</td>
<td>3.7 mA</td>
<td>10 uV</td>
<td>0.3 uV/°C</td>
<td>2.5 nA</td>
<td>(V-) + 0.6 V, (V+) – 0.6 V RL = 2 kΩ, Aol > 94 dB</td>
</tr>
<tr>
<td>OPA340</td>
<td>LV CMOS</td>
<td>P-Drain N-Drain</td>
<td>2.5 – 5.5 V</td>
<td>750 uA</td>
<td>150 uV</td>
<td>4 uV/°C</td>
<td>0.2 pA</td>
<td>(V-) + 1 mV, (V+) – 1 m V RL = 100 kΩ, Aol > 106 dB</td>
</tr>
</tbody>
</table>

- **OPA340**
 - Rail-to-rail CMOS op amp optimized for low-voltage, single-supply operation
 - Voltage Output Swing typically 1 mV from rails for $R_L = 100$ kΩ, $Aol \geq 106$ dB
 - Closest swing to rail of any PA op amp
Bipolar vs. CMOS Output Swing vs. I_{out}
Open Loop Output Impedance: Z_o – Bipolar vs. CMOS

Bipolar is generally the flattest and lowest Z_o

CMOS Z_o is often higher and not as flat as Bipolar.

Zero Drift amplifiers and microPower amplifiers often have a complex Z_o.

Note:

Z_o is an important factor when an op amp drives capacitive loads. Accurate SPICE op amp macromodels can be used to predict behavior and stabilize op amp circuits.
Bipolar vs. CMOS Bandwidth vs. I_q

BIPOLAR

\[g_m = \frac{q \cdot I_c}{k \cdot T} \]

\[r_{gm} = \frac{1}{g_m} \]

\[BW = \frac{g_m}{2 \cdot \pi C_c} = \frac{1}{2 \cdot \pi C_c \cdot r_{gm}} \]

\[BW = \frac{q \cdot I_c}{2 \cdot \pi C_c \cdot k \cdot T} \]

MOSFET

\[g_m = \sqrt{\frac{2 \cdot I_D \cdot \mu \cdot C_{ox}}{W \cdot L}} \]

\[r_{gm} = \frac{1}{g_m} \]

\[BW = \frac{g_m}{2 \cdot \pi C_c} = \frac{1}{2 \cdot \pi C_c \cdot r_{gm}} \]

\[BW = \sqrt{\frac{2 \cdot I_D \cdot \mu \cdot C_{ox} \cdot W}{2 \cdot \pi C_c \cdot L}} \]

- CMOS BW increases by increasing W/L or I_d
- CMOS BW increases by square root of I_d
- Bipolar increases linearly with I_c
Junction Isolation vs. Dielectrically Isolated

Junction Isolation

Dielectrically Isolated
Junction Isolation vs. Dielectrically Isolated

High performance, JFET input, bipolar op amps

<table>
<thead>
<tr>
<th>Model</th>
<th>Technology</th>
<th>Rail-to-rail</th>
<th>Supply V+ to V-</th>
<th>Op Current typ</th>
<th>Offset typ</th>
<th>Offset drift typ</th>
<th>Bias Current typ</th>
<th>Voltage noise 1 kHz</th>
<th>GBW</th>
<th>Slew rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA827</td>
<td>Junction isolation</td>
<td>No</td>
<td>8V - 36 V</td>
<td>4.8 mA</td>
<td>75 uV</td>
<td>0.1 uV/°C</td>
<td>8 pA</td>
<td>4 nV/√Hz</td>
<td>22 MHz</td>
<td>28 V/us</td>
</tr>
<tr>
<td>OPA627</td>
<td>Dielectric isolation</td>
<td>No</td>
<td>9V – 36 V</td>
<td>7 mA</td>
<td>40 uV</td>
<td>0.4 uV/°C</td>
<td>1 pA</td>
<td>5.2 nV/√Hz</td>
<td>16 MHz</td>
<td>55 V/us</td>
</tr>
</tbody>
</table>

- **OPA827** - Low-Noise, High-Precision, JFET-Input op amp
 - Precision 16-bit to 18-bit mixed signal systems, transimpedance amplifiers

- **OPA627** – “Hallmark” High-Precision JFET-Input op amp
 - lower noise, lower offset voltage, and higher speed than most JFET input op amps
 - Voltage noise performance comparable with the best bipolar-input op amps
<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMOS</th>
<th>Bipolar</th>
<th>JFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vos</td>
<td>Generally Larger than bipolar. Complex trim. Inherent ≈ 5mV, Trimmed ≈ 500uV</td>
<td>Generally smaller than JFET and CMOS. Laser Trim Only. Inherent ≈ 200uV, Trimmed ≈ 20uV</td>
<td>Generally Larger than bipolar. Complex trim. Laser Trim Only. Inherent ≈ 1mV, Trimmed ≈ 100uV</td>
</tr>
<tr>
<td>Ib</td>
<td>Low compared with bipolar $I_b \approx 1\text{pA} @ 25C$</td>
<td>Much larger than CMOS and JFET. Can use bias current calculation. Inherent ≈ 100nA, Canceled ≈ 1nA</td>
<td>Low compared with bipolar $I_b \approx 1\text{pA} @ 25C$</td>
</tr>
<tr>
<td>Ib Drift</td>
<td>Doubles every 10C, diode leakage $I_{B\text{,room}} \approx 1\text{pA}, T = 25C$ $I_{B\text{,hot}} \approx 1000\text{pA}, T = 125C$</td>
<td>Small compared to room temp $I_{B\text{,room}} \approx 1\text{nA}, T = 25C$ $I_{B\text{,hot}} \approx 3\text{nA}, T = 125C$</td>
<td>Doubles every 10C, diode leakage $I_{B\text{,room}} \approx 1\text{pA}, T = 25C$ $I_{B\text{,hot}} \approx 1000\text{pA}, T = 125C$</td>
</tr>
<tr>
<td>Ibos</td>
<td>Large offset current that is comparable to I_b. Don’t use resistor to cancel effects. $I_b \approx \pm 1\text{pA}$, $I_{bos} = \pm 1\text{pA}$</td>
<td>When bias current cancellation is not used I_{bos} is low relative to I_b. Resistor can help cancel effects. $I_b = 100\text{nA}$, $I_{bos} = \pm 1\text{nA}$</td>
<td>Large offset current that is comparable to I_b. Don’t use resistor to cancel effects. $I_b \approx \pm 1\text{pA}$, $I_{bos} = \pm 1\text{pA}$</td>
</tr>
<tr>
<td>Parameter</td>
<td>CMOS</td>
<td>Bipolar</td>
<td>JFET</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Broadband Noise</td>
<td>✗ Generally Larger than bipolar. Noise decreases to the square root of Id.</td>
<td>✔ Generally smaller than JFET and CMOS. Noise decreases directly with Id.</td>
<td>✗ Slightly higher than Bipolar</td>
</tr>
<tr>
<td>1/f Noise</td>
<td>✗ Generally worse than bipolar. Noise Corner > 1kHz</td>
<td>✔ Generally better than CMOS. Noise Corner < 10Hz</td>
<td>✔ Generally better than CMOS, but not as good as bipolar. Noise Corner < 100Hz</td>
</tr>
<tr>
<td>Back-to-Back Diodes</td>
<td>✔ May or may not be required. Check Data Sheet!</td>
<td>✗ Generally required</td>
<td>✔ Not required. Check Data Sheet</td>
</tr>
<tr>
<td>Integrated Digital?</td>
<td>✔ Yes. i.e. Chopper, package trim</td>
<td>✗ No</td>
<td>✗ No</td>
</tr>
<tr>
<td>Rail to Rail Input</td>
<td>✔ Yes</td>
<td>✗ No.</td>
<td>✗ Not common. Difficult</td>
</tr>
<tr>
<td>Rail to Rail Output</td>
<td>Very close to the rail. 10mV</td>
<td>Close to the rail. 200mV</td>
<td>Same as bipolar</td>
</tr>
<tr>
<td>Output vs. Load</td>
<td>✗ Falls off quickly with load. Ron of output transistor.</td>
<td>✔ Relatively flat until you reach current limit. Vsat not related to Ron as with CMOS.</td>
<td>Same as bipolar</td>
</tr>
</tbody>
</table>
Thank you