Getting Started with 3D Time-of-Flight Sensing

Session 3
Understanding the system trade-offs
What’s In the Video Series

Session 1: 3D Time-of-Flight Sensor Theory of Operation
Session 2: Recommended Design Process and Leveraging Available Design Resources
Session 3: Understanding the System Trade-Offs
Session 4: Lens Calibration
Session 5: System Offset Calibration
Session 6: Illumination Subsystem Design and Component Selections
Session 7: PCB Design and Layout Considerations
Session 8: Optical Design and Lens Selection Considerations
Session 9: Embedded Processor Selection and Integration
Session 10: Time-of-Flight Image Filtering
Session 11: Integrating TOF and RGB Camera
Session 12: Using VoxelViewer
Session 13: Introduction to Voxel SDK
Session 14: Operating in High-Ambient Environment
Session 15: Multi-Camera Operation
Session 16: Application Deep Dive – People Counting
Session 17: Application Deep Dive – Robot Navigation
Session 18: Application Deep Dive – Gesture Control
Session 19: Application Deep Dive – Scanning
Depth Sensing Quality

\[\sigma = \frac{c}{4\sqrt{2\pi} f} \cdot \frac{\sqrt{B + A}}{c_d A} \]

\(\sigma \) Depth variance

\(A \) Amplitude

\(B \) Offset

\(c \) Speed of Light

\(f \) Modulation Frequency

\(c_d \) Modulation Contrast

Payne et al. “Multiple Frequency Range Imaging to Remove Measurement Ambiguity”
Amplitude Tradeoffs

- Amplitude (A)
- Offset (B)
- Speed of Light (c)
- Modulation Frequency (f)
- Modulation Contrast (c_d)
- Depth variance (σ)

Reflectivity

Distance

$$I = \frac{1}{d^2}$$

FOV

Optics

Power

Frame Rate

Directions of increasing accuracy
Offset Tradeoffs

\[\sigma \quad \text{Depth variance} \]
\[A \quad \text{Amplitude} \]
\[B \quad \text{Offset} \]
\[c \quad \text{Speed of Light} \]
\[f \quad \text{Modulation Frequency} \]
\[c_d \quad \text{Modulation Contrast} \]
Modulation Frequency Tradeoffs

\(\sigma \) Depth variance

\(A \) Amplitude

\(B \) Offset

\(c \) Speed of Light

\(f \) Modulation Frequency

\(c_d \) Modulation Contrast
Modulation Contrast Tradeoffs

\[\sigma \quad \text{Depth variance} \]
\[A \quad \text{Amplitude} \]
\[B \quad \text{Offset} \]
\[c \quad \text{Speed of Light} \]
\[f \quad \text{Modulation Frequency} \]
\[c_d \quad \text{Modulation Contrast} \]

Directions of increasing accuracy

\(\sim 20\text{MHz} \)

NIR LED

\(\sim 50\text{MHz} \)

TOF Imaging Sensor

Power
Depth Sensing Quality (more detail)

\[
\delta D = \frac{c}{2 \times f_m} \times \sqrt{\frac{\frac{1}{q} \times (P_A + P_{BGL}) \times A_{pix} \times t_{int} + n_{system}^2}{QE \times k_{opt} \times C_{mod}^2 \times \frac{1}{q^2} \times P_A^2 \times A_{pix}^2 \times t_{int}^2}} \times f(\phi)
\]

\(\delta D\) \quad \text{Depth accuracy}

\(P_A\) \quad \text{Back-scattered signal power (reflection)}

\(P_{BGL}\) \quad \text{Background signal power (ambient)}

\(A_{pix}\) \quad \text{Pixel area}

\(t_{int}\) \quad \text{Integration time}

\(C_{mod}\) \quad \text{Modulation contrast}

\(k_{opt}\) \quad \text{Optical constant}

\(n_{system}\) \quad \text{Systematic noise}
System designer tool

- Complete system modeling from illumination to sensor to depth processing
- Provides insight into accuracy, illumination power and other tradeoffs; enables exploring what-if scenarios
- Outputs detailed graphs and reports for multiple configurations
- Available as a Windows application
What’s In the Video Series

Session 1: 3D Time-of-Flight Sensor Theory of Operation
Session 2: Recommended Design Process and Leveraging Available Design Resources
Session 3: Understanding the System Trade-Offs
Session 4: Lens Calibration
Session 5: System Offset Calibration
Session 6: Illumination Subsystem Design and Component Selections
Session 7: PCB Design and Layout Considerations
Session 8: Optical Design and Lens Selection Considerations
Session 9: Embedded Processor Selection and Integration
Session 10: Time-of-Flight Image Filtering
Session 11: Integrating TOF and RGB Camera
Session 12: Using VoxelViewer
Session 13: Introduction to Voxel SDK
Session 14: Operating in High-Ambient Environment
Session 15: Multi-Camera Operation
Session 16: Application Deep Dive – People Counting
Session 17: Application Deep Dive – Robot Navigation
Session 18: Application Deep Dive – Gesture Control
Session 19: Application Deep Dive – Scanning
What’s Next?

• Contact your local TI Sales Representatives or Distributors

• E-Mail support@ti.com for any questions.

• Visit http://www.ti.com/3dtof for more information.

• Check out http://e2e.ti.com/support/sensor/optical_sensors/

• Check out http://github.com/3dtof