Tips and Tricks for Successful Power Designs

Part 1: EMI/EMC
Part 2: Optimizing Efficiency
Agenda: Part 1 – EMI/EMC

• EMI/EMC – Definition & Standards

• EMI analysis of various power stages

• Ways to mitigate using PCB Layout

• EMI in AC/DC Converters

• EMI Analysis
Key Learnings

• EMI and the standards

• Root cause of EMI created by ALL Switched Mode Power Supplies

• PCB and Ground Techniques to Mitigate EMI

• Noise Sources in a Real Schematic

• Measurement of EMI
What is EMI & EMC?

EMI
(Electromagnetic Interference)

Unwanted coupling of signals from one circuit to another, or to system

Conducted EMI:
coupling via conduction through parasitic impedances, power and ground connections

Radiated EMI:
unwanted coupling of signals via radio transmission

EMC
(Electromagnetic Compatibility)

An electrical systems ability to perform its specified functions in the presence of EMI generated either internally or externally by other systems.
EMI/EMC Standards

- EMC Standards vary by:
 - Region
 - US = FCC
 - Europe = CISPR = EN
 - Application usage
 - Consumer
 - Medical
 - Automotive
 - What standards do we use
 - FCC part 15 B
 - CISPR 22 = EN 55022
Conducted vs. Radiated Emission Limits

Conducted

FCC/CISPR Conducted Emission Limits

- FCC and CISPR standards the same

Radiated

FCC/CISPR Radiated Emission Limits (measured at 10m)

- FCC and CISPR standards somewhat different
- FCC B (consumer) much more stringent than FCC A (commercial, industrial, and business)
Compliance Tests for DC Converters

- There are no specified EMC limits for DC converters
 - EMC requirements are for complete systems measured on AC lines (and signal lines)
 - DC converter is a subcomponent

- Pre-compliance testing can be performed to determine if EMI issues might exist
 - Use limit curves from FCC Part 15 B/CISPR 22/EN55022
 - Use same test set up and LISN as AC mains testing
 - Use same average, quasi-peak, peak measurement methods

- Exception is Power over Ethernet (PoE)
 - DC input power is on CAT-5 ethernet cable which also is system (signal) cable
 - EMC requirements usually apply to this cable
 - EMC specifications and testing the same as AC lines
 - Special TLISN required to measure 8 wires inside CAT-5 cable (no shield or ground connections)
Understanding EMI log scale

• Define dB\(\mu\)V:

\[
V_{dB\mu V} = 20 \log \left(\frac{V}{10^{-6}} \right)
\]

– Ex: 500\(\mu\)V = 54dB\(\mu\)V; 2000\(\mu\)V = 66dB\(\mu\)V

Noise voltage ratio is 4. → Only 12dB\(\mu\)V difference in dB\(\mu\)V scale!

Be careful! Small difference in dB\(\mu\)V could refer to large difference in \(\mu\)V!
How does Noise show up in the System?

NOISE SOURCE
Emissions !!!

ENERGY COUPLING MECHANISM
- **Conducted**
 - Low Frequency
- **Electric Fields**
 - Low, Mid Frequency, LC Resonance
- **Magnetic Fields**
- **Radiated**
 - High Frequency

SUSCEPTIBLE SYSTEM
Immunity
Field Apps Engineering Approach to mitigate EMI

identify significant EMI Sources

figure out EMI Coupling Paths

engineer Circuit Layout to mitigate EMI

add EMI Filter / Snubber / Shielding

NOISE SOURCE
Unwanted Emissions

ENERGY COUPLING MECHANISM

Conducted Electric Fields
Magnetic Fields
Radiated

EMI Filters

SUSCEPTIBLE SYSTEM

EMI Filters

Shielding

Shielding

Snubber

EMI Filter / Shielding
SMPS is Big Generator of Radiated and Conducted Emissions

• Due to
 – High power
 – High di/dt on the switches and diodes
 – Fast transients (voltage and current)
 – Not generally enclosed (not shielded)
 – Parasitic inductance and capacitance in current paths

• Causing
 – **Noise** Conducted to Supply and / or Load
 – **Interfere** with circuits in the same system
 – **Interfere** with other systems
EMI to be considered for a SMPS

- Conduction emission issue:
 - Solve by EMI filter.

- Near-field radiation emission issue:
 - Solve by better PCB layout and component placement.

- Far-field radiation emission issue:
 - Not focused on in this presentation
Identify Critical Path

Buck Converter

Boost Converter

Buck-Boost Converter

Switching Current exist in the input side

Critical path
Identify Critical Path

Buck Converter

Boost Converter

Buck-Boost Converter

Critical path
Identify Critical Path

Buck Converter

Boost Converter

Buck-Boost Converter

Critical path

Non-Inverting

Inverting
What can we do in PCB Layout? → Buck Example

- Minimize critical path area
- Separate noisy ground path from quiet ground
Identify Critical Paths in Isolated Converters

Flyback Converter

Forward Converter

Push-Pull Converter

Half Bridge Converter

Full Bridge Converter

Critical paths
Identify Critical Paths in Isolated Converters

- Flyback Converter
- Forward Converter
- Push-Pull Converter
- Half Bridge Converter
- Full Bridge Converter
Identify Critical Paths in Isolated Converters

Flyback Converter
Forward Converter
Push-Pull Converter
Half Bridge Converter
Full Bridge Converter

Critical paths
Identify Critical Paths in Isolated Converters

- Flyback Converter
- Forward Converter
- Push-Pull Converter
- Half Bridge Converter
- Full Bridge Converter

HALF-BRIDGE

Critical paths
Identify Critical Paths in Isolated Converters

Flyback Converter

Forward Converter

Push-Pull Converter

Half Bridge Converter

Full Bridge Converter

FULL-BRIDGE

Critical paths

Vin

Q1

Q2

D1

L

Q3

Q4

Cin

NS1

NS2

Np

Vout

C0

D2
EMI Mitigation by PCB Layout

Critical Path Area Reduction

- BUCK Example

![Diode Circuit Diagram]

- Bypass Caps in High di/dt loop should be placed as close as possible to the switching components.
- Low side FET SOURCE should be connected as close as possible to the input capacitor.
- Apply to critical paths in other SMPS topologies.

Grounding
Lower EMI can be achieved by…

- Place capacitors on same side of board as component being decoupled
- Locate as close to pin as possible
- Keep trace width thick and minimized

Connecting to decoupling capacitors

Connecting to output capacitors
EMI Mitigation by PCB Layout

Critical Path Area Reduction

- Switch node SW swings from V_{IN} or V_{OUT} to ground at F_{sw}.
 - very high dv/dt node! = electrostatic radiator!

- Requires a contradiction:
 - As large as possible for current handling,
 - yet as small as possible for electrical noise reasons

- Solutions:
 - Switch node short and wide
 - Minimum Copper Width Requirement:
 - Roughly 30mils/Amp for 1 Oz Cu and 60 mils/Amp for ½ Oz Cu
Contradiction on SW node transition rate:

- Faster Rising and Falling Times
 - Less Losses
 - Higher EMI

Resistor Value:

Start with 1-10 ohms and adjust from there.
EMI Mitigation by PCB Layout

Critical Path Loop Reduction

- Ground Plane
 - Return Current takes the least IMPEDANCE path
 - Unbroken Ground Plane provides shortest return path – image current return path:

Grounding

Current flow in top layer trace

Return current path in unbroken ground plane directly under path:
Area minimized & B field minimized

Trace or Cut on the ground plane

Return current path enclose much larger area if the direct path is blocked!
Conduction EMI – Common mode noise

Key parameters:
1. C_{ps}
2. V_{ps}

CM EMI model
Conduction EMI – Differential mode noise

Key parameters:
1. ESL of Cbus.
2. EPC of L, L_{pfc}.
3. V_{ds} dV/dt.
The Usual Suspects - Noise Sources

Input Ripple Current

Inter-winding Capacitance

Stray Capacitance from High DV/DT Surfaces to the Outside World
Conduction EMI – Lower transformer C_{PS}

Target: lower CPS to reduce CM noise.
Possible actions:
1. Increase the distance between primary and secondary.
 • Side effect: larger leakage and larger losses.
2. Decrease the facing area between primary and secondary.
 • Side effect: larger leakage and larger losses.
 • Side effect: increase cost and need more space.
4. Suitable terminal connection: easy and a must do!
Conduction EMI – Better transformer winding

Original design

 Better design

Hot-voltage Terminal

EMI Filter

Original design

 Better design
Typical Mitigation Techniques

- **Common-mode Choke**: To reduce Common-Mode Noise
- **Y-Cap**: To reduce Common-Mode Noise
- **Filtering for Differential-mode Noise**: Techniques for reducing noise in differential signals
- **Shielding Techniques Inside Transformer**: Methods to provide electromagnetic protection
- **Snubber**: To reduce ringing effects in the circuit

Input: 85VAC-265VAC

Output: 13.5V/0.9A
Rectifier Location in Flyback Converter

- Rectifier in return lead of transformer
- CIN/CEMI/COUT couple dot end of primary and non-dot end of secondary to 0 Vac
- Maximum voltage potential between windings
- AC current flows in transformer capacitance, resulting in common mode current flow and EMI issues
Rectifier Location in Flyback Converter

- Rectifier in positive lead of transformer
- CIN/CEMI/COUT couple dot end of primary and dot end of secondary to 0 Vac
- No voltage potential between windings
- No AC current flows in transformer capacitance, no common mode currents, less EMI
Conducted EMI Test Setup
Compliance Test Procedure

- Start with Peak Detector measurement
- If Peak measurement is below AVG and QP, no need for further testing
- Only test AVG and QP at frequencies where Peak measurement is above AVG/QP limits
Compliance Testing Data Example

National Technical Systems, Plano TX
CISPR Class B Conducted Emissions
CISPR Pre-Scan Neutral 150kHz - 30MHz

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>QP Limit dBuV</th>
<th>AVE Limit dBuV</th>
<th>AVE Readings dBuV</th>
<th>AVE Margin dB</th>
<th>OP Readings OP Margin dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.927</td>
<td>60.000</td>
<td>50.000</td>
<td>46.127</td>
<td>-3.873</td>
<td>58.924</td>
</tr>
<tr>
<td>9.029</td>
<td>50.000</td>
<td>50.000</td>
<td>46.293</td>
<td>-3.707</td>
<td>58.475</td>
</tr>
<tr>
<td>9.237</td>
<td>60.000</td>
<td>50.000</td>
<td>47.223</td>
<td>-2.777</td>
<td>60.166</td>
</tr>
<tr>
<td>9.341</td>
<td>50.000</td>
<td>50.000</td>
<td>46.302</td>
<td>-2.698</td>
<td>59.029</td>
</tr>
<tr>
<td>9.459</td>
<td>60.000</td>
<td>50.000</td>
<td>45.306</td>
<td>-4.694</td>
<td>58.111</td>
</tr>
<tr>
<td>9.652</td>
<td>60.000</td>
<td>50.000</td>
<td>44.252</td>
<td>-5.748</td>
<td>56.798</td>
</tr>
</tbody>
</table>

CISPR Class B 0.150-30MHz
EUT On / PEM9204
Testing On 120VAC/60Hz

Just Barely Failed
What Scan to Use for Testing PMP Boards?

<table>
<thead>
<tr>
<th>Scan Type</th>
<th>Time Per Scan</th>
<th>Time for Complete Set of Scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Detector</td>
<td>~1 hour</td>
<td>4-5 hours</td>
</tr>
<tr>
<td>Quasi-Peak Detector</td>
<td>1-2 hours</td>
<td>6-8 hours</td>
</tr>
<tr>
<td>Peak Detector</td>
<td><1 minute</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Peak Detector Max-Hold</td>
<td>1-5 minutes</td>
<td>10-20 minutes</td>
</tr>
</tbody>
</table>