How to Design
Full-wave rectifier circuit

General Purpose Amplifiers
www.ti.com/general-amps
www.ti.com/circuitcookbooks
Circuit Description
Design Goals

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{i\text{Min}}$</td>
<td>$V_{i\text{Max}}$</td>
<td>$V_{o\text{Min}}$</td>
</tr>
<tr>
<td>±25 mV</td>
<td>±10 V</td>
<td>25 mV</td>
</tr>
</tbody>
</table>

$V_o = |V_i|$
Design Steps

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{i\text{Min}}$</td>
<td>$V_{i\text{Max}}$</td>
<td>$V_{o\text{Min}}$</td>
</tr>
<tr>
<td>±25 mV</td>
<td>±10 V</td>
<td>25mV</td>
</tr>
</tbody>
</table>

$Vo = Vi$

www.ti.com/circuitcookbooks
Design Steps

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{i\text{Min}}$</td>
<td>$V_{o\text{Min}}$</td>
<td>V_{cc}</td>
</tr>
<tr>
<td>±25 mV</td>
<td>25 mV</td>
<td>15 V</td>
</tr>
<tr>
<td>$V_{i\text{Max}}$</td>
<td>$V_{o\text{Max}}$</td>
<td>V_{ee}</td>
</tr>
<tr>
<td>±10 V</td>
<td>10 V</td>
<td>-15 V</td>
</tr>
<tr>
<td>V_{ref}</td>
<td></td>
<td>0 V</td>
</tr>
</tbody>
</table>

$$\frac{V_o}{V_i} = -\frac{R2}{R1}$$

$$R1 = R2 = 1 \text{ } k\Omega$$

$$R3 = 1 \text{ } k\Omega$$
Transient Results

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{i\text{Min}}$</td>
<td>$V_{o\text{Min}}$</td>
<td>V_{cc}</td>
</tr>
<tr>
<td>$\pm25,\text{mV}$</td>
<td>25mV</td>
<td>15V</td>
</tr>
<tr>
<td>$V_{i\text{Max}}$</td>
<td>$V_{o\text{Max}}$</td>
<td>V_{ee}</td>
</tr>
<tr>
<td>$\pm10,\text{V}$</td>
<td>10V</td>
<td>-15V</td>
</tr>
<tr>
<td>V_{ref}</td>
<td></td>
<td>0V</td>
</tr>
</tbody>
</table>

![Circuit Diagram](image.png)

www.ti.com/circuitcookbooks
Transient Results

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_i\text{Min}$</td>
<td>$V_i\text{Max}$</td>
<td>$V_o\text{Min}$</td>
</tr>
<tr>
<td>$\pm 25 \text{ mV}$</td>
<td>$\pm 10 \text{ V}$</td>
<td>25mV</td>
</tr>
</tbody>
</table>

www.ti.com/circuitcookbooks
Design Notes:

1. For a full-wave rectifier circuit, be sure to use a fast switching diode for D1 and D2.

2. Select an op amp with sufficient bandwidth and slew rate.

3. Use precision resistors to reduce gain error.
Design Resources

EE Cookbook: Op Amp
www.ti.com/circuitcookbooks
Step-by-step circuit design of common op amp building block circuits.

TI Designs
www.TI.com/tidesigns
Ready-to-use reference designs with theory, calculations, simulations
schematics, PCB files, bench test results

Analog Engineer’s Pocket Reference
www.TI.com/analogrefguide
PDF, iTunes app and hardcopy available
PCB, analog, mixed signal design formulae
Conversions, tables, equations

TI Precision Labs
www.TI.com/precisionlabs
Quiz questions, problems, solutions
Labs and evaluation module (EVM) available

TINA-TI™ simulation software
www.TI.com/tool/tina-ti
Complete SPICE simulator DC, AC, transient, noise analysis
Schematic entry and post-processor for waveform math

DIYAMP-EVM
www.TI.com/DIYAMP-EVM
Evaluation module providing engineers with SC70, SOT23, SOIC packaging and 12 popular amplifier configurations

The Signal
www.TI.com/signalbook
PDF, iTunes app and hardcopy available
A compendium of blog posts on op amp design topics including offset voltage, input bias current, stability, noise and more

Analog Wire Blog
www.TI.com/analogwire
Technical blogs written by analog experts
Tips, tricks, and design techniques

TI E2E™ Community
www.TI.com/e2e
Support forums for all TI products

Op Amp Parametric Quick Search
www.TI.com/amplifiers
Search for precision, high-speed, general-purpose, ultra-low-power, audio and power op amps

Op Amp Parametric Cross-Reference
www.TI.com/opampcrossreference
Find similar TI op amps using competitive part numbers