#### How to Design Multi-kW Converters for Electric Vehicles

Part 1: Electric Vehicle power systems

Part 2: Introduction to Battery Charging

Part 3: Power Factor and Harmonic Currents

Part 4: Power Factor Correction

Part 5: The Phase Shifted Full Bridge

Part 6: How the PSFB works

Part 7: A High Power On Board Charger Design

Part 8: MOSFET gate driver considerations and References

Colin Gillmor: (HPC), email: colingillmor@ti.com





# Typical high power system: EV charger



# **On-Board Charger (OBC)**

#### What is the On-board Charger?

- An On Board Charger is used in an electric vehicle (EV) or hybrid electric vehicle (HEV) to charge the traction battery (48V or HV usually ~400V)
- This includes:
  - Converts the grid 50/60Hz into DC
  - Adjusts the DC level to the levels required by the battery and provides the galvanic isolation
  - Includes a Power Factor corrector (PFC)



#### What does this EE consist of?

- PFC Controller and Rectification
  - High Efficiency rectification with lowest harmonic impact to the grid
- Controller
  - Analog or Digital Control (<2kW to >100kW)
  - Adjusts the DC level to the levels required by the battery
- Galvanic Isolation
  - Galvanic Isolation Grid to Battery
  - Bias Supply
- Diagnostics
  - · Temperature Sensing
  - Current & Voltage Sensing
  - Iso Barrier

# A brief word about efficiency

Is 99% efficiency really so much better than 98% efficiency?



Figure 28. Thermal Image Captured After 30 Minutes When Delivering 310 W at 16.4-V Battery

TIDA-00705



### A brief word about efficiency

Is 99% efficiency really so much better than 98% efficiency?

#### YES - of course it is

Better to think in terms of power loss

2kW at 99% efficiency => 20W of loss

2kW at 98% efficiency => 40W of loss - twice as much heat to shed



Figure 28. Thermal Image Captured After 30 Minutes When Delivering 310 W at 16.4-V Batter

TIDA-00705

At constant power, as product gets smaller:

- surface area reduces & temperature rises

Best solution to reducing temperature rise is to reduce losses -

This eases thermal design

Allowing replacement of expensive liquid cooling with lower cost air cooling!





#### How to Design Multi-kW Converters for Electric Vehicles

#### **Thank You**

Part 1: Electric Vehicle power systems

Part 2: Introduction to Battery Charging

Part 3: Power Factor and Harmonic Currents

Part 4: Power Factor Correction

Part 5: The Phase Shifted Full Bridge

Part 6: How the PSFB works

Part 7: A High Power On Board Charger Design

Part 8: MOSFET gate driver considerations and References

Colin Gillmor: (HPC), email: colingillmor@ti.com





© Copyright 2018 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com