Power Factor Correction (PFC) Circuit Basics

Brent McDonald
Ben Lough
Objectives & agenda

• Introduction
 – What is power factor correction (PFC)?
 – Why is it needed?
 – How is it measured?

• Overview
 – Critical conduction mode (CrCM)
 • Compensation
 • Feed-forward
 • Sources of distortion
 – Continuous conduction mode (CCM)
 – Interleaved
 – Bridgeless
Regional power quality requirements
What is power factor and why should I care?

- Laptop ~ 60 W
- USA > 3.2 TW

Power Factor: 0.40

Power Factor: 0.99
How is the “PF” measured & regulated?

\[
PF = \frac{\cos(\varphi)}{\sqrt{1 + THD}}
\]

\[
THD = \frac{\sum_{n=2}^{\infty} i_n^2}{I_1}
\]
How is it done?

Solutions include
- Boost
- Flyback
- Sepic
- Buck
- Passive solutions

Benefits
- Achieve unity PF
- Regulated output
- Energy hold up
- Universal input
The boost converter

\[\frac{V_{OUT}}{V_{IN}} = \frac{1}{1 - D} \]
The CrCM PFC

- Constant ON-time
 - \(I_{L(AVG)} = \frac{V_{IN}}{2L} t_{ON} \)

- Operates on the boundary between DCM and CCM

- Huge switching frequency variation

- Zero current switching for boost diode, no reverse recovery

![CrCM PFC Frequency Variation](image)

![Switching Waveforms](image)

Note: Time base in zoomed plots is relative to 3.7 ms.

\[V_{RMS} = 240.0 \text{ V}, \ V_N = 333.4 \text{ V} \]
The CrCM PFC

- **Constant ON-time**
 - \(I_{L(AV)} = \frac{V_{IN}}{2L} t_{ON} \)

- Operates on the boundary between DCM and CCM

- Huge switching frequency variation

- Zero current switching for boost diode, no reverse recovery
DCM & valley switching

\[I_L \]

\[V_{ds} \]

\[V_{IN} = 240.0 \text{ V}, \ V_{dc} = 176.4 \text{ V} \]

\begin{align*}
\text{Time (us)} & \\
\text{Current (A)} & \\
\text{Voltage (V)} & \\
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 \\
-0.5 & 0 & 0.5 & 1.0 & 1.5 & 2.0 & 0 & 0.5 & 1.0 & 1.5 & 2.0 \\
100.0 & 200.0 & 300.0 & 400.0 & 0 & 100.0 & 200.0 & 300.0 & 400.0 \\
\end{align*}
DCM & valley switching
Valley switching impact on f_s
Distortion

Valley = 0
$PF = 0.9945$, $THD = 23.4\%$

$V_{IN (RMS)} = 240$ V, $P_{OUT} = 265$ W

Valley = 1
$PF = 0.9970$, $THD = 15.6\%$

$V_{IN (RMS)} = 240$ V, $P_{OUT} = 265$ W

Valley = 2
$PF = 0.9972$, $THD = 15.8\%$

$V_{IN (RMS)} = 240$ V, $P_{OUT} = 265$ W

Amplitude (A)

Frequency

Texas Instruments
Compensation

- Feed-forward power delivery independent of line voltage
 - One compensation parameter set works for very wide input voltage range
- Trade-off
 - Good PF requires a slow control loop (<10 Hz typical)
 - Good transient response requires fast control loop
 - Non-linear error amplifier gain helps address transient response performance
Putting it all together – CrCM
CrCM wrap up – Low solution $, <300 W

- Simple implementation

- Valley switched
 - Low C_{oss} loss at MOSFET turn-on

- No reverse recovery
 - Able to use lower cost ultra-fast diode

- Inductor current ripple is large (200%)
 - Larger RMS currents
 - Larger core loss in inductor

- Good PF, mediocre THD
 - THD can be improved using more complex approaches
CCM PFC operation

- Converter operates at a fixed switching frequency, duty-cycle now a function of instantaneous line voltage
- Much smaller current ripple than CrCM but no longer valley switched
- Non-ZCS switching for boost diode, good Q_{RR} performance needed
- Capable of delivering a lot more power
CCM PFC operation

- Converter operates at a fixed switching frequency, duty-cycle now a function of instantaneous line voltage
- Much smaller current ripple than CrCM but no longer valley switched
- Non-ZCS switching for boost diode, good Q_{RR} performance needed
- Capable of delivering a lot more power
The CCM PFC
CCM wrap up – Better PF/THD, >300 W

- Fixed frequency with limited inductor current ripple
 - Smaller RMS currents
 - Smaller conduction losses than CrCM
 - Lower cost core material

- Hard switching for both boost MOSFET and boost diode
 - Higher switching losses than CrCM
 - Good Q_{RR} performance is essential
 - SiC diode often used

- More complex control scheme
 - Slow voltage loop, fast current loop
 - Most modern CCM PFC controllers will simplify complexity for the end user
Interleaved PFC

- Two converters operated 180° out of phase
- Works with CrCM or CCM types
- Ripple cancellation at 50% duty-cycle
Interleaved PFC

- Two converters operated 180° out of phase
- Works with CrCM or CCM types
- Ripple cancellation at 50% duty-cycle
When to consider interleaving

- **Power loss distributed between two power stages**
 - Improved thermal management
 - More component choices

- **Power density**
 - Reduced z-height at the expense of x/y space

- **Lower input and output current ripple**
 - EMI filter may be physically smaller
I want bridgeless, can I do this?
Bridgeless PFC

Semi-Bridgeless

- Advantages
 - Simple control
 - Ground referenced gate drive

- Disadvantages
 - 2 power stages
 - 6 semiconductors
 - Poor core utilization

AC Switch

- Advantages
 - Lowest ON-state conduction
 - Balanced EMI

- Disadvantages
 - Isolated drive
 - Current sense
 - 6 semiconductors

Totem Pole

- Advantages
 - Minimum components
 - Good efficiency

- Disadvantages
 - Complex
 - High side drive
 - Current sense
 - Common mode
 - Reverse recovery
Selecting the right PFC topology: Output power

- How does output power influence decision?
- Peak inductor current comparison at 500 W
 - Single phase CCM: 8.84 A
 - Single phase CrCM: 17.49 A
Selecting the right PFC topology: Interleaved CrCM vs single phase CCM

<table>
<thead>
<tr>
<th>Design Characteristics</th>
<th>Interleaved CrCM</th>
<th>Single Phase CCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component stress</td>
<td>Conduction loss split between two power stages, valley switched</td>
<td>Single power stage, hard switched</td>
</tr>
<tr>
<td>Power density</td>
<td>Lower</td>
<td>Higher</td>
</tr>
<tr>
<td>Height</td>
<td>Smaller overall component height</td>
<td>Single inductor, larger heatsinks</td>
</tr>
<tr>
<td>Thermal management</td>
<td>Power dissipation spread over greater X/Y space</td>
<td>More challenging</td>
</tr>
<tr>
<td>Complexity</td>
<td>High power stage component count</td>
<td>Single power stage</td>
</tr>
<tr>
<td>Cost</td>
<td>Higher</td>
<td>Lower</td>
</tr>
</tbody>
</table>
Selecting the right PFC topology: EMI comparison

- **Critical conduction mode**
 - Inductor current ripple is 200%, requires physically larger EMI filter
 - Variable frequency – noise less concentrated in one frequency
- **Continuous conduction mode**
 - Physically smaller filter but fixed frequency
- **Interleaved**
 - Ripple current cancellation allows for physically smaller EMI filter
- **Bridgeless**
 - Common mode challenging for some variations
Topology selection exercise

Design specification
- Laptop adaptor
- USB-C, 100 W output
- 100 V\textsubscript{AC} to 240 V\textsubscript{AC} input
- Smallest form factor critical

TIDA-01623
- Single phase CrCM PFC + active clamp flyback
- Form factor: 70 mm × 42 mm × 16.5 mm
- 93.4% efficiency end-to-end at full load
Topology selection exercise

Design specification
- Class-D audio amplifier
- 90 V_AC to 265 V_AC input
- 200 W continuous, 750 W peak
- Small solution size preferable (length, width and height)

TIDA-00776
- Single phase CCM PFC + 2-switch forward
- Form factor: 88 mm x 173 mm x 35 mm
- http://www.ti.com/tool/PMP30183
Topology selection exercise

Design specification

- OLED TV
- 85 V_{AC} to 265 V_{AC} input
- Peak output power: 480 W
- AC/DC supply embedded within panel: thin profile needed

TIDA-01495

- Interleaved CrCM PFC + half-bridge LLC
- <17 mm height
Summary

• Overall
 – Huge benefit to infrastructure
 – Regional regulatory requirements

• Control method impacts power stage behavior
 – Conduction losses
 – Switching losses
 – Switching frequency profile

• PFC solution considerations
 – Output power capability
 – Size
 – Complexity vs performance
BACKUP
Interleaved PFC

Current Ripple Cancellation

Normalized Ripple Current vs Duty Cycle
Benefits of active PFC

- **Output of PFC is a regulated voltage**
 - Easier design of isolated DC/DC stage

- **PFC can easily handle wide input voltage range**
 - One design able to support different line voltages around the world (115 V for US, 230 V for EU, 100 V for Japan, etc.)

- **PFC output capacitance provides holdup time when AC is disconnected**
 - Allows for a controlled shutdown sequence
Valley switching

0^{th} Valley

1^{st} Valley

2^{nd} Valley