RF PLLs and Synthesizers: Key Parameters and Specifications

TI Precision Labs – Clocks and Timing

Presented by Liam Keese
Prepared by Noel Fung
Phase lock loop (PLL) overview
Phase lock loop (PLL) overview

- Carefully *design loop filter* to meet phase noise, lock time and spurs requirement
- Key parameters and specifications for a design
 - Phase detector frequency
 - Charge pump current
 - VCO gain
 - PLL and VCO noise
 - Spurs
 - Lock time
- Design tools
 - Clock Architect
 - PLLatium Sim
PLL – Flicker noise and FOM

• Normalized PLL 1/f noise (Flicker noise)
 – Usually dominates at offset below 1 kHz
 – Typical value better than -120 dBc/Hz
• Normalized PLL noise floor (FOM)
 – Determines phase noise at mid-range offset
 – Typical value better than -230 dBc/Hz
PLL – N Divider noise

- Normalized PLL 1/f noise (Flicker noise)
 - Usually dominates at offset below 1 kHz

- Normalized PLL noise floor (FOM)
 - Determines phase noise at mid-range offset

- N-counter
 - Added noise = 20\log_{10}(N)
 - e.g. added noise = 40 dB for N = 100
PLL – Total PLL noise (in-band noise)

- Normalized PLL 1/f noise (Flicker noise)
 - Usually dominates at offset below 1 kHz

- Normalized PLL noise floor (FOM)
 - Determines phase noise at mid-range offset

- N-counter
 - Added noise = 20log(N)

- Total noise determines PLL in-band noise
Phase detector frequency, f_{PD}

- $f_{PD} = \text{Reference clock frequency} / R$
- Rising edge of R-divider signal triggers phase comparison
- Max. f_{PD} is usually less than 300 MHz
Charge pump current

- Constant current source
- Turn-on time is variable
- Current is configurable
 - 100 µA to a few mA per step
VCO gain, K_{vco}

- Use a varactor diode to change the oscillator frequency

- Tuning range is limited

- K_{vco}
 - Changes in frequency against V_{tune}
 - Varies across the whole VCO tuning range
 - A few MHz/V to more than a 100 MHz/V

A typical Colpitts oscillator
VCO phase noise

• Determines closed-loop far-out phase noise
VCO phase noise

• Determines closed-loop far-out phase noise

• Phase noise
 – SSB power difference between the carrier and an offset, normalized in 1 Hz
 – Expressed in xx dBc/Hz@ yy Hz offset
 – Carrier frequency specific

-121 dBc/Hz @ 100 kHz offset at 2.1 GHz carrier
Spurs

- **Phase detector spurs**
 - Offset = f_{PD}
- **Fractional spurs**
 - Offset = $N_{frac} \times f_{PD}$
- **Sub-fractional spurs**
 - $\frac{1}{2}$, $\frac{1}{4}$ of fractional spurs
- **Crosstalk spurs**
 - Crosstalk between
 - Phase detector and VCO
 - Integer Boundary Spurs (IBS)
 - Phase detector and output
 - Reference clock and output
 - Reference clock and VCO
Lock time

- Lock time is how long it takes to change one frequency to another and get within a certain frequency tolerance
- Wide loop bandwidth reduces lock time
- Lock time $\approx \frac{4}{\text{loop bandwidth}}$
Applying key parameters and specifications
Phase detector frequency

\[f_{PD} \] determines N-divider value
Charge pump current

Charge pump gain
VCO gain
VCO phase noise
PLL noise
To find more technical resources and search products, visit ti.com/clocks
Quiz

• True or false: VCO phase noise determines closed-loop close-in phase noise

• True or false: N-divider will increase PLL noise by 20\log(N)

• True or false: Phase detector is triggered by the rising edge of the N-divider signal

• True or false: Turn-on time of the charge pump is proportional to the phase difference between the signals from R-divider and N-divider

• True or false: Phase detector spur frequency is not predictable
Quiz

• True or **false**: VCO phase noise determines closed-loop close-in phase noise

• **True** or false: N-divider will increase PLL noise by $20\log(N)$

• True or **false**: Phase detector is triggered by the rising edge of the N-divider signal

• **True** or false: Turn-on time of the charge pump is proportional to the phase difference between the signals from R-divider and N-divider

• True or **false**: Phase detector spur frequency is not predictable