Basics of SPI: Timing Requirements and Switching Characteristics

TI Precision Labs – Digital Communications

Presented by Alex Smith
Prepared by Joseph Wu
SPI Communication

Names commonly used in TI devices

Violating a timing specification can cause a failure to read the data and may cause unexpected results.
SPI Timing: Setup Time

Setup time

Hold time

Propagation Delay

Example is SPI mode 0: SCLK idles low and data is clocked in on the leading edge of SCLK

Here, a 1 is clocked into the device

The state of DIN is read into the device at the rising edge of SCLK. To ensure the data is correctly read, DIN must be at the correct state for a setup time **before** the SCLK rises

Setup time is the minimum time required before the clocking edge for which the data must be stable to be latched correctly
SPI Timing: Hold Time

Setup time

Hold time

Propagation Delay

Again, the state of DIN is read into the device at the rising edge of SCLK. DIN must be held at the correct state for a hold time after the SCLK rises.

Hold time is the minimum time required after the clocking edge for which the data must be stable to be latched correctly.
SPI Switching: Propagation Delay

Setup time

Hold time

Propagation Delay

DOUT is read by the master at the rising edge of SCLK. However, the slave sets the output at the previous falling edge of SCLK. This delay from one clock event to the response is a propagation delay.

The falling edge of SCLK sets up the data on DOUT

Propagation delay is the time required for an input change to cause an output change through the digital circuitry.
SPI Timing

Timing Requirements and Switching Characteristics example from the ADS1118

7.6 Timing Requirements: Serial Interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_{SSC})</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{HCS})</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{SH})</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{SCLK})</td>
<td>250</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{SPWH})</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{SPWL})</td>
<td>100</td>
<td>28</td>
<td>ms</td>
</tr>
<tr>
<td>t(_{DSS})</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{HSD})</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{HCH})</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) CS can be tied low permanently in case the serial bus is not shared with any other device.
(2) Holding SCLK low longer than 28 ms resets the SPI interface.

7.7 Switching Characteristics: Serial Interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_{SDCO})</td>
<td>DOUT load = 20 pF</td>
<td></td>
<td>100 kΩ to GND</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>t(_{PD})</td>
<td>DOUT load = 20 pF</td>
<td></td>
<td>100 kΩ to GND</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>t(_{SISO})</td>
<td>DOUT load = 20 pF</td>
<td></td>
<td>100 kΩ to GND</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
SPI Timing Diagram

Timing diagram for the ADS1118

Device uses SPI Mode 1: SCLK idles low, data clocked in at falling edge of SCLK

Boxes for DIN and DOUT are high or low data

Arrows enclose timing specifications
SPI Timing Diagram

Figure 1. Serial Interface Timing

Minimum pulse duration, CS high
This time defines the time required for the CS to stay high to ensure that the device has reset the SPI communications.
SPI Timing Diagram

Figure 1. Serial Interface Timing

t_{CSSC}

CS low to first SCLK high

This time defines the time required for the CS to stay high to ensure that the device recognizes it is the slave.

A violation may cause the device to miss the first SCLK pulse
The minimum time for an SCLK period
SCLKs can be sent to a device only so fast before the device fails to recognize it. This defines the minimum time for SCLK.
1/\(t_{SCLK} \) is the SCLK frequency
The minimum time for an SCLK high and the minimum time for an SCLK low. These two times with t_{SCLK} define how much skew in the SCLK duty cycle is allowed.

For this device, there is a maximum t_{SPWL} for SPI timeout.
SPI Timing Diagram

Figure 1. Serial Interface Timing

tscs

Time from the falling edge of SCLK to the rising edge of CS

Because CS disables the SPI, ensure that the device receives the last bit of data before shutting down SPI communication

A violation of this could cause the device to miss the last data transmission
SPI Timing Diagram

t_{SCSC}

Time from the falling edge of SCLK to the rising edge of SCLK in the next CS

This time is required to execute the command from one CS period, to start a new command in another CS period.

Figure 1. Serial Interface Timing
SPI Timing Diagram

Setup time from the rising edge of DIN to the falling edge of SCLK

For data to be read into the device, the DIN must first be established for a time period before the SCLK falling edge.
SPI Timing Diagram

Hold time from the falling edge of SCLK to the falling edge of DIN.

Once the data is set onto the DIN line, the SCLK falling edge latches the data into the device. However, there is a required time for the data to be held after the SCLK falling edge.

Figure 1. Serial Interface Timing
SPI Timing Diagram

- **t_{CS DOD}**
 - Propagation delay time from CS falling to DOUT actively driven
 - When CS is high, the DOUT is high impedance or Hi-Z, allowing for multiple devices on the bus to drive DOUT a device at a time.
 - When CS goes low, DOUT is actively driven.
SPI Timing Diagram

Figure 1. Serial Interface Timing

t_DOPD

Propagation delay time from rising edge of SCLK to data appearing on DOUT

SCLK is used to clock out data from the device. When SCLK is driven high, this signals to the device that data should be put on DOUT that can be clocked out on the falling edge of DOUT.

SCLK is used to clock out data from the device. When SCLK is driven high, this signals to the device that data should be put on DOUT that can be clocked out on the falling edge of DOUT.
SPI Timing Diagram

Figure 1. Serial Interface Timing

- **t\textsubscript{DOHD}**
 - Propagation delay time from rising edge of SCLK to data changing on DOUT
 - This defines the time for which the last data is still valid once the rising edge of SCLK occurs.
SPI Timing Diagram

Figure 1. Serial Interface Timing

Propagation delay time from rising edge of CS to DOUT becoming Hi-Z

t_{CSDOZ}
Thanks for your time!
Please try the quiz.
Quiz: Basics of SPI: Timing Requirements and Switching Characteristics
TIPL xxxx
TI Precision Labs – Precision Data Converters

Created by Joseph Wu
1. The following diagram is CPOL = 0, CPHA = 1. Data is clocked in on the falling edge of SCLK. DIN must be stable for a time after the SCLK falling edge. This timing is an example of which timing requirement?

a. Setup time
b. Hold time
c. Propagation delay
d. None of the above
Quiz: Basics of SPI: Timing Diagram

1. The following diagram is CPOL = 0, CPHA = 1. Data is clocked in on the falling edge of SCLK. DIN must be stable for a time after the SCLK falling edge. This timing is an example of which timing requirement?
 a. Setup time
 b. Hold time
 c. Propagation delay
 d. None of the above

 \[\text{SCLK} \quad \text{DIN} \quad \text{DOUT}\]
2. The following diagram is CPOL = 0, CPHA = 1. DIN and DOUT are read on the falling edge of SCLK. However, DOUT is set up on the rising edge of SCLK, and there may be time required for the data to arrive on DOUT. This timing is an example of which timing requirement?

a. Setup time
b. Hold time
c. Propagation delay
d. None of the above
Quiz: Basics of SPI: Timing Diagram

2. The following diagram is CPOL = 0, CPHA = 1. DIN and DOUT are read on the falling edge of SCLK. However, DOUT is set up on the rising edge of SCLK, and there may be time required for the data to arrive on DOUT. This timing is an example of which timing requirement?

a. Setup time
b. Hold time
c. Propagation delay
d. None of the above
Quiz: Basics of SPI: Timing Diagram

3. The following diagram is CPOL = 0, CPHA = 1. Data is clocked in on the falling edge of SCLK. DIN must be stable for a time before the falling edge of SCLK. This timing is an example of which timing requirement?

a. Setup time
b. Hold time
c. Propagation delay
d. None of the above
3. The following diagram is CPOL = 0, CPHA = 1. Data is clocked in on the falling edge of SCLK. DIN must be stable for a time before the falling edge of SCLK. This timing is an example of which timing requirement?

a. Setup time
b. Hold time
c. Propagation delay
d. None of the above
To find more <insert product series name> technical resources and search products, visit ti.com/<insert product portal>