Cosmic radiation effects on electronics and how to pick the right part

Kirby Kruckmeyer,
Radiation Effects and Applications Engineer
Agenda

Taken from TI’s “Radiation handbook for electronics”
www.ti.com/radbook

Talk will focus on space radiation effects

- **Destructive radiation effects**
 - TID, SEL, SEGR and Displacement Damage

- **Non-destructive radiation**
 - SET, SEFI and SEU

- **Risks of using COTS for space applications**

- **Radiation misconceptions**
 - SOI, epi, datecode, process control
Kirby Kruckmeyer

• Coauthor of TI’s Radiation handbook for electronics
• Applications and radiation engineer in TI HiRel group
• Experience
 – Came to TI from National acquisition in 2011
 – Radiation testing and qualification
 – Rad hard wafer processing
 – Mil/aero manufacturing, testing and qualification
• Previous experience
 – Bipolar and CMOS wafer processing
 – Automotive Q100 product development and qualification
• Name etched on wafer floating in space
Space radiation environment

Natural

- **Sources**
 - Cosmic rays from outside our solar system
 - Solar radiation
 - Particles trapped in the radiation belts
- **Particles**
 - Electrons
 - Low energy protons
 - High energy protons
 - Heavy ions
- **Exposure variables**
 - Orbit
 - Solar activity

Man made

- **Sources**
 - Nuclear detonation
- **Particles**
 - Neutrons
 - Photons
Radiation effects

<table>
<thead>
<tr>
<th></th>
<th>TID</th>
<th>SEE</th>
<th>DDD</th>
<th>Prompt Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ionizing</td>
<td>Total ionizing dose</td>
<td>Single event</td>
<td>Displacement damage dose</td>
<td>Prompt dose</td>
</tr>
<tr>
<td>Source</td>
<td>Protons and electrons in</td>
<td>High energy protons</td>
<td>Protons in space</td>
<td>A flash of protons from a nuclear explosion</td>
</tr>
<tr>
<td></td>
<td>space; X-rays and gamma</td>
<td>and heavy ions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rays on earth</td>
<td>in space; neutrons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>on earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect</td>
<td>Accumulated dose over time</td>
<td>A single high</td>
<td>Damage to the silicon</td>
<td>Large photo currents in</td>
</tr>
<tr>
<td></td>
<td>charges dielectrics</td>
<td>energy strike</td>
<td>lattice from many ion</td>
<td>bulk of die</td>
</tr>
<tr>
<td></td>
<td></td>
<td>causing a</td>
<td>strikes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>transient, upset,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>latch-up, damage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or other effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcategories</td>
<td>ELDRS</td>
<td>SEL, SET, SEU,</td>
<td></td>
<td>Dose rate upset, dose rate latch-up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEFI, SEGR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test method</td>
<td>Gamma rays</td>
<td>Accelerator</td>
<td>Neutrons</td>
<td>Flash x-ray</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cyclotron)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation</td>
<td>Shielding (adds cost and</td>
<td>Redundancy;</td>
<td>Shielding (adds cost and</td>
<td>Redundancy; detection</td>
</tr>
<tr>
<td>(other than</td>
<td>weight)</td>
<td>detection and</td>
<td>weight)</td>
<td>and reset (adds complexity, cost and down</td>
</tr>
<tr>
<td>rad hard IC)</td>
<td></td>
<td>reset (adds</td>
<td></td>
<td>time)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>complexity, cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and down time)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiation effects

<table>
<thead>
<tr>
<th>TID</th>
<th>SEE</th>
<th>DDD</th>
<th>Prompt Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ionizing dose</td>
<td>Single event effects</td>
<td>Displacement damage dose</td>
<td>Prompt dose</td>
</tr>
<tr>
<td>Source</td>
<td>Protons and electrons in space; X-rays and gamma rays on earth</td>
<td>High energy protons and heavy ions in space; neutrons on earth</td>
<td>Protons in space</td>
</tr>
<tr>
<td>Effect</td>
<td>Accumulated dose over time charges dielectrics</td>
<td>A single high energy strike causing a transient, upset, latch-up, damage or other effect</td>
<td>Damage to the silicon lattice from many ion strikes</td>
</tr>
<tr>
<td>Subcategories</td>
<td>ELDRS</td>
<td>SEL, SET, SEU, SEFI, SEGR</td>
<td></td>
</tr>
<tr>
<td>Test method</td>
<td>Gamma rays</td>
<td>Accelerator (cyclotron)</td>
<td>Neutrons</td>
</tr>
<tr>
<td>Mitigation (other than rad hard IC)</td>
<td>Shielding (adds cost and weight)</td>
<td>Redundancy; detection and reset (adds complexity, cost and down time)</td>
<td>Shielding (adds cost and weight)</td>
</tr>
</tbody>
</table>
Radiation effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Protons and electrons in space; X-rays and gamma rays on earth</th>
<th>High energy protons and heavy ions in space; neutrons on earth</th>
<th>Protons in space</th>
<th>A flash of protons from a nuclear explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
<td>Accumulated dose over time charges dielectrics</td>
<td>A single high energy strike causing a transient, upset, latch-up, damage or other effect</td>
<td>Damage to the silicon lattice from many ion strikes</td>
<td>Large photo currents in bulk of die</td>
</tr>
<tr>
<td>Subcategories</td>
<td>ELDRS</td>
<td>SEL, SET, SEU, SEFI, SEGR</td>
<td></td>
<td>Dose rate upset, dose rate latch-up</td>
</tr>
<tr>
<td>Test method</td>
<td>Gamma rays</td>
<td>Accelerator (cyclotron)</td>
<td>Neutrons</td>
<td>Flash x-ray</td>
</tr>
<tr>
<td>Mitigation (other than rad hard IC)</td>
<td>Shielding (adds cost and weight)</td>
<td>Redundancy; detection and reset (adds complexity, cost and down time)</td>
<td>Shielding (adds cost and weight)</td>
<td>Redundancy; detection and reset (adds complexity, cost and down time)</td>
</tr>
</tbody>
</table>
Radiation effects

<table>
<thead>
<tr>
<th></th>
<th>TID</th>
<th>SEE</th>
<th>DDD</th>
<th>Prompt Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ionizing</td>
<td>Total ionizing</td>
<td>Single event effects</td>
<td>Displacement damage dose</td>
<td>Prompt dose</td>
</tr>
<tr>
<td>dose</td>
<td>dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Protons and</td>
<td>High energy protons and</td>
<td>Protons in space</td>
<td>A flash of protons from a nuclear explosion</td>
</tr>
<tr>
<td></td>
<td>electrons in space;</td>
<td>heavy ions in space;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X-rays and gamma</td>
<td>neutrons on earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rays on earth</td>
<td>rays on earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect</td>
<td>Accumulated dose</td>
<td>A single high energy</td>
<td>Damage to the silicon lattice from</td>
<td>Large photo currents in bulk of die</td>
</tr>
<tr>
<td></td>
<td>over time charges</td>
<td>strike causing a transient,</td>
<td>many ion strikes</td>
<td></td>
</tr>
<tr>
<td>dielectrics</td>
<td></td>
<td>upset, latch-up, damage or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcategories</td>
<td>ELDRS</td>
<td>SEL, SET, SEU, SEFI, SEGR</td>
<td>Dose rate upset, dose rate latch-up</td>
<td></td>
</tr>
<tr>
<td>Test method</td>
<td>Gamma rays</td>
<td>Accelerator (cyclotron)</td>
<td>Neutrons</td>
<td>Flash x-ray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation (other</td>
<td>Shielding (adds</td>
<td>Redundancy; detection and</td>
<td>Shielding (adds cost and weight)</td>
<td>Redundancy; detection and reset (adds complexity, cost and down time)</td>
</tr>
<tr>
<td>than rad hard IC</td>
<td>cost and weight)</td>
<td>reset (adds complexity, cost and down time)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiation effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Total ionizing dose</th>
<th>Single event effects</th>
<th>Displacement damage dose</th>
<th>Prompt dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons and electrons in space; X-rays and gamma rays on earth</td>
<td>High energy protons and heavy ions in space; neutrons on earth</td>
<td>Protons in space</td>
<td>A flash of protons from a nuclear explosion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>Accumulated dose over time charges dielectrics</th>
<th>A single high energy strike causing a transient, upset, latch-up, damage or other effect</th>
<th>Damage to the silicon lattice from many ion strikes</th>
<th>Large photo currents in bulk of die</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subcategories</th>
<th>ELDRS</th>
<th>SEL, SET, SEU, SEFI, SEGR</th>
<th>Dose rate upset, dose rate latch-up</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Test method</th>
<th>Gamma rays</th>
<th>Accelerator (cyclotron)</th>
<th>Neutrons</th>
<th>Flash x-ray</th>
</tr>
</thead>
</table>

| Mitigation (other than rad hard IC) | Shielding (adds cost and weight) | Redundancy; detection and reset (adds complexity, cost and down time) | Shielding (adds cost and weight) | Redundancy; detection and reset (adds complexity, cost and down time) |
Radiation effects

<table>
<thead>
<tr>
<th>TID</th>
<th>SEE</th>
<th>DDD</th>
<th>Prompt Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ionizing dose</td>
<td>Single event effects</td>
<td>Displacement damage dose</td>
<td>Prompt dose</td>
</tr>
<tr>
<td>Source</td>
<td>Protons and electrons in space; X-rays and gamma rays on earth</td>
<td>High energy protons and heavy ions in space; neutrons on earth</td>
<td>Protons in space; A flash of protons from a nuclear explosion</td>
</tr>
<tr>
<td>Effect</td>
<td>Accumulated dose over time charges dielectrics</td>
<td>A single high energy strike causing a transient, upset, latch-up, damage or other effect</td>
<td>Damage to the silicon lattice from many ion strikes; Large photo currents in bulk of die</td>
</tr>
<tr>
<td>Subcategories</td>
<td>ELDRS</td>
<td>SEL, SET, SEU, SEFI, SEGR</td>
<td>Dose rate upset, dose rate latch-up</td>
</tr>
<tr>
<td>Test method</td>
<td>Gamma rays</td>
<td>Accelerator (cyclotron)</td>
<td>Neutrons</td>
</tr>
<tr>
<td>Mitigation (other than rad hard IC)</td>
<td>Shielding (adds cost and weight)</td>
<td>Redundancy; detection and reset (adds complexity, cost and down time)</td>
<td>Shielding (adds cost and weight)</td>
</tr>
</tbody>
</table>
Radiation effects

<table>
<thead>
<tr>
<th>TID</th>
<th>SEE</th>
<th>DDD</th>
<th>Prompt Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ionizing dose</td>
<td>Single event effects</td>
<td>Displacement damage dose</td>
<td>Prompt dose</td>
</tr>
<tr>
<td>Source</td>
<td>Protons and electrons in space; X-rays and gamma rays on earth</td>
<td>High energy protons and heavy ions in space; neutrons on earth</td>
<td>Protons in space</td>
</tr>
<tr>
<td>Effect</td>
<td>Accumulated dose over time charges dielectrics</td>
<td>A single high energy strike causing a transient, upset, latch-up, damage or other effect</td>
<td>Damage to the silicon lattice from many ion strikes</td>
</tr>
<tr>
<td>Subcategories</td>
<td>ELDRS</td>
<td>SEL, SET, SEU, SEFI, SEGR</td>
<td>Dose rate upset, dose rate latch-up</td>
</tr>
<tr>
<td>Test method</td>
<td>Gamma rays</td>
<td>Accelerator (cyclotron)</td>
<td>Neutrons</td>
</tr>
<tr>
<td>Mitigation (other than rad hard IC)</td>
<td>Shielding (adds cost and weight)</td>
<td>Redundancy; detection and reset (adds complexity, cost and down time)</td>
<td>Shielding (adds cost and weight)</td>
</tr>
</tbody>
</table>
TID – total ionizing dose

- Dielectric (oxide, nitride, etc.) charging and surface states at oxide/silicon interface
- Increased leakages and soft breakdowns; impacts
 - supply current
 - input parameters (bias current, offset voltage)
 - response time
 - output voltage
 - linearity
 - functionality
- Can be shielded to some extent
 - adds weight and cost
 - not 100% mitigation

TID units

• The units for TID are rad
 – rad(Si) for silicon based products
 – rad = “Radiation Absorbed Dose” (CGS units)
 – dose causing 100 ergs of energy absorbed by 1 g of matter

• 1 krad = 1000 rad
 – krad(Si) are most common units for electronics

• 1 Gy = 100 rad
 – Grey are in SI units
 – Gy is most commonly used in medical applications
TID testing

• Device under test (DUT) electrically tested
 – per datasheet or SMD
• DUT exposed to gamma rays
 – Cobalt-60 source
 – Radioactive decay of Co-60 emits gamma rays
 – DUT powered up while being irradiated
• Post irradiation:
 – DUT retested
• RLAT: radiation lot acceptance testing
 – Either wafer or wafer lot

TI’s HDR TID test system
ELDRS – enhanced low dose rate sensitivity

- Standard radiation test is an accelerated test
 - High dose rate (HDR): 50 to 300 rad/s
 - Less than 6 minutes to reach 100 krad
 - Space systems can take 10 years to reach 100 krad

- ELDRS discovered in 1990
 - Some bipolar linear products degraded more when lower dose rate used to attain same TID
 - Sometimes worse case when DUT unbiased during irradiation
 - Old way of testing (HDR biased) not valid for some products going into space environment

- Risk with classic linear bipolar
 - Not a risk for CMOS, digital or SiGe

HDR = high dose rate (50 to 300 rad/s)
LDR = low dose rate (0.01 rad/s)
ELDRS characterization and testing

- Bipolar linear products are now characterized for ELDRS
 - Some units irradiated at HDR (50 to 300 rad/s)
 - Some units irradiated at LDR (0.01 rad/s)
 - Results compared
 - If more drift at LDR, product is said to have ELDRS
 - RLAT must be done at LDR
 - If product does not show significantly more drift at LDR the part is considered ELDRS-free
 - RLAT done at either LDR or HDR
 - Testing to 100 krad at LDR (0.01 rad/s) takes almost 6 months
 - TI does RLAT on classic bipolar products (LM124, LM139, LM117, etc) at LDR even though the products are ELDRS-free
SEE – single event effects

• In space, a single heavy ion or high energy proton impacts a device
 – On earth can be caused by neutrons (not covered in this talk)

• Ion generates electron-hole pairs
 – Can cause non destructive effects
 SEU – single event upset
 SET – single event transient
 SEFI – single event functional interrupt
 – And destructive effects
 SEL – single event latch-up
 SEGR – single event gate rupture
 SEB – single event burnout
 SEDR – single event dielectric rupture

• Typically cannot be shielded
Single event on Qantas Flight 72

Single subatomic event has human-scale impact!
Examples of single events in space

Green spot is from an SEU on the Level-0 Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
https://landsat.usgs.gov/single-event-upset-seu

SEUs on Image magnetosphere imaging satellite. It is believed that the satellite lost signal due to an SEU.
https://image.gsfc.nasa.gov/
SEL – single event latch-up

• Perhaps, SEE of most concern
 – Most CMOS products at risk and it can be destructive

• An ion strike turns on parasitic PNPN structure like a silicon controlled rectifier (SCR)
 – SCR will stay turned on until part is powered down
 – Draws more current than circuit design
 – Can cause product to malfunction
 – Can impact product life
 – Eventually will destroy device (can be less than one second)

• Some CMOS products inherently immune
 – Depends on design and/or technology node
 – Won’t know without testing or an intimate knowledge of design and process

• Unlikely in bipolar products (junction isolated)
 – TI will test new products anyway

• Mitigation for non rad hard ICs: redundancy and/or detect and reset circuits
 – Adds complexity, weight, and system downtime
SEFI – single event functional interrupt

- An ion strike causes a part to go into a different state
 - different effects
- **Product that is programmed:**
 - control register bit can flip causing the part to go into a different configuration
 - may be necessary to reprogram the part
- **Product with a reset circuit:**
 - ion strike may cause the part to go into reset
 - some will recover on their own,
 - some may need to be reconfigured after reset
- **Product with an off pin:**
 - part could go into the off state
- **Mitigation: periodic register scrub**
 - Additional resources needed; system downtime
SEU – single event upset

- Flipping of a digital bit from 1 to 0 or 0 to 1
 - At one time, SEU was used to describe any nondestructive SEE, such as transients or SEFI
 • Still may see this confusion

- Almost all products with a digital outputs will have SEUs under heavy ion testing
 - Need to determine probability of it occurring and energy required
 - Some products might not have SEUs with lower energy ions or with protons
 - Some products could be SEU immune for certain orbits
SET – single event transient

- An ion strike causes a transient on a analog output
 - This is called SEU in older papers
- Almost all analog products will have SETs under the right (wrong) operating conditions
- SETs highly dependent upon the operating conditions
 - Regulator: input voltage and output voltage, current and capacitance
 - Opamp: configuration, supply voltage, differential input, feedback loop, etc.
- Mitigation: operating and application conditions
Destructive SEEs

SEB – single event burnout

SEGR – single event gate rupture
 – SEB and SEGR are two different mechanisms but difficult to distinguish from one another
 – Concern for power MOSFETs
 – Gate oxide can be damaged from an ion strike
 – Voltage and current dependent
 • Commercial products must be derated for space missions
 • TI space products already characterized; derating not needed

SEDR – single event dielectric rupture
 – Similar to SEGR but on non power devices such as capacitor oxides
SEE testing

- **Heavy ion testing conducted at a cyclotron**
 - Only a few facilities in the US and in Europe; beam time can be hard to get
 - Cost: $1000 to $4000 per hour of beam time
 - Testing a product takes between 4 to 24 hours or more of beam time
 - Additional costs/time for test setup and analyzing data

- **Proton testing done at similar facilities but other accelerators may be used**

- **DUT delidded to expose die to beam**
 - Most facilities beams cannot penetrate packaging
 - Challenge for flipchips

- **DUT powered up and operating during testing**

- **Monitor part performance during beam run**
 - Supply current for SEL
 - Output for SEU or SET
 - Part functionality for SEFI

TI PXI SEE test board at TAMU cyclotron
SEE test results

- **LET** = linear energy transfer
 - amount of energy deposited in silicon by an ion
 - will be different for different ions
 - Units: MeV-cm2/mg (sometimes shortened to MeV)

- **Record**
 - Fluence = number of ions shot at DUT during beam run
 - Units: #ions/cm2
 - Number of errors during beam run

- **Calculate cross section**
 - Number of errors/fluence
 - Units: cm2

- **Plot cross section vs LET**

- If LETs below 14 MeV-cm2/mg it may be necessary to do proton testing
SEE data analysis

- **Fit Weibull curve to data**

\[F(L) = A \left(1 - \exp \left\{ - \left[\frac{L - L_0}{W} \right]^s \right\} \right); \quad L > L_0 \]

\[F(L) = 0; \quad L < L_0 \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>SEFI 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Saturated cross section</td>
<td>8.7E-06</td>
</tr>
<tr>
<td>L_0</td>
<td>Onset LET</td>
<td>48</td>
</tr>
<tr>
<td>W</td>
<td>Width</td>
<td>9</td>
</tr>
<tr>
<td>s</td>
<td>Fit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Weibull fit parameters used to determine probability of SEE for a certain orbit**

<table>
<thead>
<tr>
<th>ORBIT TYPE</th>
<th>ONSET LET (MeV-cm²/mg)</th>
<th>CREME96 INTEGRAL FLUX (/day–cm²)</th>
<th>(\sigma_{\text{sat}}) (cm²)</th>
<th>EVENT RATE (/day)</th>
<th>EVENT RATE (FIT)</th>
<th>MTBE (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO(ISS)</td>
<td>48.0</td>
<td>4.5E–04</td>
<td>8.7E–06</td>
<td>3.9E–09</td>
<td>0.16</td>
<td>7.0E+05</td>
</tr>
<tr>
<td>GEO</td>
<td>1.5E–03</td>
<td>1.5E–03</td>
<td>1.3E–08</td>
<td>1.0E–08</td>
<td>0.53</td>
<td>2.1E+05</td>
</tr>
</tbody>
</table>

MTBE – Mean time between event
Protons in space can cause damage to the silicon lattice
 – This can cause traps that tie up carriers (electrons and holes)
 – Can also cause leakages

Dependent upon feature size and active junction depths
 – Some bipolar parts fail below 1×10^{12} n/cm2
 – CMOS tend to survive greater than 1×10^{13} n/cm2
 – Many programs with DDD requirements do not bother to test CMOS products

Test method
 – Stick bag of parts in neutron reactor
 – Wait to cool down
 – Electrically test units
 – Neutrons used instead of protons as protons also have TID effects
Prompt dose – flash x-ray

- Nuclear detonation can cause flash of high energy photons
 - The dose rate many orders of magnitude higher than used for TID testing
- Flash can cause photocurrents within a device
- The photocurrents cause effects similar to SEEs
 - Multiple effects can occur at once
- Also known as “dose rate” testing
 - Not to be confused with LDR/HDR TID testing
- Testing similar to heavy ion testing
 - DUT is powered up and operating and monitored
 - DUT is exposed to a flash x-ray
- Results highly dependent upon the operating conditions at the time of the flash
- Suppliers typically do not test
 - Dose rate and operating conditions usually classified
RHA - radiation hardness assurance

- RHA products tested and qualified to specific TID level
- Each lot goes through TID radiation lot acceptance testing (RLAT)
 - RLAT can be done on a wafer lot or a single wafer
 - RLAT either LDR or HDR depending upon the technology
 - TID report available for each lot
- RHA is TID only and does not cover the other radiation effects
 - Per mil standard definition
 - TI goes beyond the definition and tests for other radiation effects
- TID level shown in the SMD (5962) number
Test and mil standards, SMDs and DLA

- **MIL-PRF-38535** – how to manufacture, quality and test mil and space products
 - Replaced MIL-I-38510

- **MIL-STD-883** – test methods for meeting MIL-PRF-38535
 - TM1019 – TID test method

- **SMD** – standard microcircuit drawing
 - DOD datasheet
 - Contains electrical specifications; no app info (see TI datasheet)

- **DLA** – Defense Logistics Agency – Land and Maritime
 - Formally known as DSCC and DESC
 - Owner of SMDs and mil standards
SMD PIN – Part identification number

5962R9950402VCA

- Radiation rating:
 - R = 100 krad
 - P = 30 krad
 - L = 50 krad
 - F = 300 krad

- Year SMD started:
 - 99 = 1999

- Device number:
 - 02 = device ID 02
 - To distinguish part from other variants
 - In this SMD, 02 indicates ELDRS-free

- Grade:
 - V = Space
 - Q = Mil
 - Y = Space in non-hermetic ceramic package
 - S = Space; B = Mil in old 38510 system

- Package:
 - C = CDIP
 - D = CFP
 - Z = gullwing

- Lead finish:
 - A = SnPb
 - C = Au

- Letter is not universal
 - 9 = die
TI’s space grade product family (-SP)

• Manufactured, tested and qualified per QML-V flow of MIL-PRF-38535
 – Tri-temp tested
 – 100% burn-in
• Hermetic packaging with no matte Sn lead finish
• Mil temp range of -55°C to +125°C
• RHA – Radiation hardened
 – RHA and RLAT to the specified level (30, 50, 100 or 300 krad)
 – ELDRS-free or characterized
 – SEL immune to the specified level (>60 MeV-cm²/mg)
 – Other SEE characterized; reports available
 – DDD testing on new products
 – All new space products and most older products
 • some older space releases might not be RHA
TI’s Range of Solutions

<table>
<thead>
<tr>
<th></th>
<th>Commercial</th>
<th>Q100</th>
<th>EP</th>
<th>QMLQ</th>
<th>SEP</th>
<th>QMLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging</td>
<td>Plastic</td>
<td>Plastic</td>
<td>Plastic</td>
<td>Ceramic</td>
<td>Plastic</td>
<td>Ceramic</td>
</tr>
<tr>
<td>Single Controlled Baseline</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bond Wires</td>
<td>Au/Cu</td>
<td>Au/Cu</td>
<td>Au</td>
<td>Al</td>
<td>Au</td>
<td>Al</td>
</tr>
<tr>
<td>Is Pure Sn used?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Production Burnin</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Typical Temperature Range</td>
<td>-40°C - 85°C</td>
<td>-40°C - 125°C</td>
<td>-55°C - 125°C (majority)</td>
<td>-55°C - 125°C</td>
<td>-55°C - 125°C</td>
<td>-55°C - 125°C</td>
</tr>
<tr>
<td>Radiation (SEL/SEE)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Radiation (TID) Lot Acceptance (RLAT)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Lot Level Temp Cycle</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Group D</td>
<td>Lot Level</td>
<td>Group D</td>
</tr>
<tr>
<td>Lot Level HAST</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Life Test Per Wafer Lot</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Quality / Reliability / Cost

- TI’s Range of Solutions
- Quality
- Reliability
- Cost
Radiation risks for commercial (COTS) and Q100

- Most CMOS products at risk for SEL
- Power products can have SEGR or SEB and may need derating
- TID levels are unknown for most products and technologies
- Bipolar linear products might have ELDRS, making HDR test results invalid for space
- Radiation sensitivity can be highly dependent upon design
 - Two products on the same process can have different rad responses
- Semiconductor suppliers cannot share intimate details about process or design
 - Proprietary information that gives supplier competitive advantage
- Lot to lot variations can impact rad response
- Radiation testing is costly and time consuming
- Myths are out there
 - Epi or SOI does not mean SEL immunity
 - Datecode does not provide useful lot information
Epi does not guarantee SEL immunity

- One method of radiation hardness involves using an epi substrate
 - This is a highly engineered process and epi is just a part
 - Most commercial CMOS processes use epi but still have SEL

- Most CMOS processes use a p- substrate with p- epi grown on top
 - For SEL hardening to work, substrate must be p+
 - Using to a p+ substrate can impact the performance of some products

- epi must be thin enough to prevent SCR from turning on
 - Required epi thinness is typically thinner than standard substrates
 - Thinning the epi can cause performance problems such as lowering the well breakdown voltage
 - Much engineering work goes into developing the rad hard process

K. LaBel et al., “Single event effect characteristics of CMOS devices employing various epi-layer thicknesses”, RADECS, Sept. 1995, pp. 258-262
SOI does not guarantee SEL immunity

- **SOI – Silicon on insulator**
 - The active area of device sits on a buried oxide layer (BOX)
- **Deep trench isolation (DTI)**
 - If isolation trench is deep enough to reach down to the BOX, structure cannot have SEL
- **Shallow trench isolation (STI)**
 - If isolation trench does not reach BOX, SEL is still a risk
 - Common in BiCMOS to use DTI for bipolar and STI for CMOS

![Diagram showing DTI isolating N and P wells, preventing SEL](image1)

![Diagram showing STI not deep to isolate N and P wells, SEL still a risk](image2)
Micro SELs are not safe

- Modern, complex CMOS products can have micro SELs
 - A latch-up event causes a small rise in current
 - Current is limited either by power supply to latched circuit or size of the SCR
 - Part remains mostly functional
 - Part runs several minutes until power reset without apparent damage
 - Common to see multiple small rises in current

- Product life risk
 - Area that is latched can draw more current than designed for
 - Latched circuit will eventually fail after repeated events
Process variation vs. radiation

• Wafer fab controls are to maintain consistent electrical performance and quality
 – Different variables impact radiation performance

• Variables impacting TID
 – Passivation stack and stoichiometry
 – Field oxide processes
 – Metal alignment
 – Surface doping levels

• Variables impacting SEE
 – Substrate parameters
 – Epi thickness
 – Junction profiles
 – Die layout
Process variation impact on SEL

Typical process control

- EPI thickness \((\pm 20\%)\)
- EPI doping \((\pm 20\%)\)
- Substrate doping \((\pm 33\%)\)
- EPI and substrate doping impact effective EPI thickness

\[
\rho_{EPI} = 5.8 - 8.4 \ \Omega \cdot \text{cm}
\]
\[
\rho_{sub} = 0.01 - 0.02 \ \Omega \cdot \text{cm}
\]

CAN Exhibits SEL based on 0.5um variation

<table>
<thead>
<tr>
<th>EPI (um)</th>
<th>Temp</th>
<th>LET</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>25</td>
<td>85</td>
<td>No</td>
</tr>
<tr>
<td>9.5</td>
<td>125</td>
<td>85</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>85</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
<td>60</td>
<td>Yes</td>
</tr>
</tbody>
</table>

To ensure SEL immunity of SN65HVD233-SP EPI process must be controlled tighter than typical commercial process.
LM108 TID variations

<table>
<thead>
<tr>
<th>LM108</th>
<th>HDR TID (krad)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot #1</td>
<td>100</td>
<td>Pass</td>
</tr>
<tr>
<td>Lot #2</td>
<td>30</td>
<td>Pass</td>
</tr>
<tr>
<td>Lot #3</td>
<td>10</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Lot #1 and #3 processed one month apart

<table>
<thead>
<tr>
<th>LM108</th>
<th>LDR TID (krad)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer #2</td>
<td>80</td>
<td>Pass</td>
</tr>
<tr>
<td>Wafer #3</td>
<td>50</td>
<td>Pass</td>
</tr>
<tr>
<td>Wafer #15</td>
<td>30</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Three wafers from the same lot
Commercial/automotive manufacturing flow

- Many products manufactured in multiple wafer fabs
 - Allows manufacturing flexibility
 - Fab transfers and closures
- Equipment and processing not the same in each fab
- Sometimes radical changes during fab transfers
 - Die shrink
 - Process topography
- Differences can impact rad performance
 - Different passivation tools have different TID response
 - Junction profiles changes will impact SEE response
Process changes and transfer impacts

- **Unitrode (UC18xx-SP) fab transfer**
 - 50 krads \rightarrow 5 krads

- **Introduction of nitride**
 - Excellent moisture barrier for improved quality on plastic packaged parts
 - 100 krads \rightarrow 10 krads and causes ELDRS

- **LM139 quad comparator transfer and die shrink**
 - Output transient impact
 - TID impact
 - Channel 1: 10 krads
 - Channel 2: 80 krads
 - Channel 3: 100 krads
 - Channel 4: 80 krads

![Graph showing amplitude vs time for old and new parts after die shrink](chart.png)
Commercial Flow (real example: SN74HC138)

3-Line To 8-Line Decoders/Demux

Commercial Process Variables
3 active wafer fabs

- TI SFAB in Sherman, Texas
- ATC (subcontractor) in Hsinchu, Taiwan
- ASMC (subcontractor) in Shanghai, China

Each wafer fab runs a similar BUT NOT identical baseline

- Glassivation (protective overcoat)
- Base silicon wafers (vendor and doping spec)
- EPI versus non-EPI (doping profile/yield)
- Diffusion and metal profiles
- Process equipment
- Process recipes
- Process control limits
Commercial Flow (real example: SN74HC138)

3-Line To 8-Line Decoders/Demux

Commercial Process Variables
3 active wafer fabs
- TI SFAB in Sherman, Texas
- ATC (subcontractor) in Hsinchu, Taiwan
- ASMC (subcontractor) in Shanghai, China

Each wafer fab runs a similar BUT NOT identical baseline
- Glassivation (protective overcoat)
- Base silicon wafers (vendor and doping spec)
- EPI versus non-EPI (doping profile/yield)
- Diffusion and metal profiles
- Process equipment
- Process recipes
- Process control limits

Commercial Assembly Baseline Flows
3 assembly/test sites
- TI Mexico
- TI Taiwan
- ALP (subcontractor) in Thailand

Each assembly site runs a similar BUT NOT identical baseline
- Lead-frame source and geometries
- Mold compound (encapsulant)
- Mount compound (die attach)
- Wire bonder type and profile
- Wire type and other materials
- Injection mold press type and profile
Datecode tells you nothing

- Four digit datecode is the date product was assembled
 - Encapsulated in plastic for commercial products
 - Lid sealed for hermetic packages
- Datecode has no wafer lot information for commercial/automotive products
 - Wafers can be stored for years before being assembled
 - One datecode is likely to be assembled from more than one wafer
 - One datecode can include different wafer lots
 - One datecode could have units that came from different wafer fabs
Summary

• Many radiation effects in space that can impact product’s life and performance
• Predicting a product’s radiation response requires intimate knowledge of design and process
 – Usually not available to customers
• Choosing and testing parts can be expensive and time consuming
• Standard commercial/automotive fab variations can impact product rad performance
• Customer has no insight into lot variations
 – Datecode does not provide meaningful wafer lot information
• No guarantee that product used will have same performance as units tested
• TI space products are tested and qualified up front
 – We do the testing and verification so you don’t have to
Online technical training from Texas Instruments…

ti.com/space
Just type that into any browser!

Radiation handbook for electronics
www.ti.com/radbook

Aerospace & Defense Training Series – Available Now
The Aerospace and Defense Training Series is your one-stop portal for product specific and system applications training material. Learn about the latest solutions to help you simplify designs, improve performance and meet stringent project requirements. [Browse videos now!](#)

Radiation reports available
Visit the technical documents tab of the –SP product pages on ti.com