Brushless – DC Motor 4: Commutation – Sinusoidal Control

TI Precision Labs - Motor Drivers

Presented and prepared by Vishnu Balaraj
Sinusoidal Brushless DC Motor Construction

Source: Electric Drives, an Integrative Approach, by Ned Mohan, University of Minn. Printing Services, 2000
Rotating magnetic field in Sinusoidal BLDC Motors

Source: http://people.ece.umn.edu/users/riaz/animations/abcvec.html
How to generate sinusoidal current?

Sinusoidal Voltage from phase to Phase

Sinusoidal Voltage with Third-Order Harmonics from Phase to GND

PWM output and the average value
Space Vector Modulation

<table>
<thead>
<tr>
<th>Sector</th>
<th>Switching Time Equation of S1, S3 and S5</th>
</tr>
</thead>
</table>
| 1 | S1 = T1 + T2 + T0/2
 | S3 = T1 + T2 + T0/2
 | S5 = T0/2 |
| 2 | S1 = T1 + T2/2
 | S3 = T1 + T2 + T0/2
 | S5 = T0/2 |
| 3 | S1 = T0/2
 | S3 = T1 + T2 + T0/2
 | S5 = T0/2 |
| 4 | S1 = T0/2
 | S3 = T1 + T2 + T0/2
 | S5 = T0/2 |
| 5 | S1 = T0/2
 | S3 = T1 + T2 + T0/2
 | S5 = T0/2 |
| 6 | S1 = T1 + T2 + T0/2
 | S3 = T0/2
 | S5 = T1 + T2 + T0/2 |

\[T_1 = T \times \text{Duty cycle} \times \sin(60 - \alpha) \]
\[T_2 = T \times \text{spd_cmd} \times \sin \alpha \]
\[T_0 = T - T_1 - T_2 \]

Duty cycle – ratio of phase voltage over supply voltage
\(\alpha \) – Rotor angle
\(T \) – PWM switching frequency
Sensored and Sensorless Sinusoidal Commutation

Sensored sinusoidal commutation

Sensorless sinusoidal commutation
BEMF Voltage and Rotor angle Estimation

• What we know:
 – Applied phase voltage \(U = \text{Duty cycle} \times Vm \)
 – Motor Inductance \(L \)
 – Motor Resistance \(R \)
 – Motor BEMF constant \(Ke \)
 – Motor speed \(\omega \)

• What we don’t know
 – \(V_{BEMF} \)
 – Rotor angle \(\alpha \)
 – Phase current \(I \)

\[
V_{BEMF} = Vm - I \times R - L \times \frac{di}{dt}
\]

\[
V_{BEMF} = \omega \times Ke \times \sin(\alpha)
\]
Advantages and Disadvantages

• Advantages
 – Ultra quiet
 – Highly efficient for sinusoidal motors
 – Low torque ripple

• Disadvantages
 – More switching losses
 – Poor speed and torque regulation for dynamic loads.
 – Increased complexity as it involves solving complex mathematical equations to estimate rotor angle.
To find more Motor Driver technical resources and search products, visit ti.com/motor-drivers.