Simplify and Optimize Your Design with Logic and Level Shifters

Standard Logic and Translation
Shreyas Rao
Detroit 2018
Agenda: Simplify and Optimize Your Design with Logic and Level Shifters

- Overview of Standard Logic Portfolio
- Understanding CMOS circuits
- Common Applications Questions
- Simple system solutions
 - Use Cases for Logic and Level Translators
 - Building Blocks examples
- Open Forum for QA/Feedback/Suggestions
Standard Logic – Overview

Voltage Translation
- **Product families**
 - Direction controlled
 - Auto direction
 - Application specific
 - Translating gates

Gates Buffers
- **Product families**
 - Gates
 - Buffers
 - Drivers

Multi-gates FFLR
- **Product families**
 - Multi-gates*
 - Buffers
 - Flip flop & Latches
 - Shift registers

Specialty Logic
- **Product families**
 - Configurable, Combo Logic
 - Logic comparators, Counters
 - Monostable multivibrators
 - Misc (Terminators, Adders, Timers)

Transceivers Encoders Decoders
- **Product families**
 - Transceivers
 - Encoders
 - Decoders

Sectors/EEs
- **HEV/EV**
- **ADAS**
- **Infotainment**
- **Motor Drive**
- **Sensor Fusion**
- **Surround sound**
- **Industrial Automation**
- **Test and Measurement**
- **Body Electronics**
- **Cluster**
- **Building Automation**
- **Factories, Servers, Grid**
- **HEV/EV**
- **ADAS**
- **Infotainment**
- **Motor Drive**

Popular Devices
- **SN74AXC8T245**
 - 8 bit, 0.65V-3.6V Translator
- **LSF0204-Q1**
 - 4-bit, 0.9V-5.5V Translator
- **TXS0104E-Q1**
 - 4-bit bidirectional translator
- **SN74LVC1G17-Q1**
 - 1-bit Schmitt Trigger Buffer
- **SN74AUP1G08**
 - Low Power Single AND Gate
- **SN74LVC1G00-Q1**
 - Single channel NAND gate
- **SN74LV125A-Q1**
 - 4-bit Buffer with Enable
- **SN74HC21-Q1**
 - Dual 4-Input AND Gate
- **SN74AHC595-Q1**
 - 8-bit Shift Register w/enable
- **SN74HC193-Q1**
 - 4-bit Synchronous Counter
- **SN74LV123A-Q1**
 - Retriggerable One-shot
- **SN74HC4060-Q1**
 - Oscillator + 14-bit Counter
- **SN74AHC245-Q1**
 - 8-bit Bus Transceiver w/Enable
- **SN74HC253**
 - Dual 4 to 1 Encoder w/Enable
- **SN74HC138-Q1**
 - Single 3 to 8 Decoder/Demux
CMOS Input Characteristics

Shoot-through Current

TI Information-Selective Disclosure
Logic Use Case: Combining Power Good Signals

Power Good with AND Gate

- **DC-DC**: Active High Power Good
- **AND**: Active High Enable
- **Processor**: Active High Enable

What problem it solves?
- Identifying power good status of the system, where multiple DC-DCs are used. AND is used when the output of the DC-DC is active high as well as the enable input of the processor is active high.

Popular Products
- SN74LVC1G08 | SN74HC21A-Q1

Power Good Options

- **DC-DC**: Active High Power Good
- **NAND**: Active Low Enable
- **Processor**: Active High

What problem it solves?
- Identifying power good status of the system, where multiple DC-DCs are used.

<table>
<thead>
<tr>
<th>Gates</th>
<th>Power Good Input</th>
<th>Enable Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR</td>
<td>Active Low</td>
<td>Active High</td>
</tr>
<tr>
<td>NAND</td>
<td>Active High</td>
<td>Active Low</td>
</tr>
<tr>
<td>AND</td>
<td>Active High</td>
<td>Active High</td>
</tr>
<tr>
<td>OR</td>
<td>Active Low</td>
<td>Active Low</td>
</tr>
</tbody>
</table>

Signal Enable using AND Gate

- **Tx Signal 1**
- **AND**: Enable
- **Tx Signal 2**

What problem it solves?
- AND gates can be used to gate signals. The second inputs can be used to force the output low or allow a signal to be transmitted.

Popular Products
- SN74LVC2G08 | SN74ALVC08A-Q1

TI Information-Selective Disclosure
Logic Use Case: Aggregating Error Signals

Enable a Switch Enable upon Error

What problem it solves?
- Combining error signals to enable a switch.

Popular Products
- SN74AHC1G32 | SN74LVC32A-Q1

Reset MCU upon Error using OR

What problem it solves?
- Activates MCU reset when an error occurs.

Popular Products
- SN74AHC1G32 | SN74LVC32A-Q1

Activate Buzzer Upon Error using OR

What problem it solves?
- Combining error signals to turn on a buzzer.

Popular Products
- SN74AHC1G32-Q1 | SN74LVC1G32
Logic Use Case: XOR Gate

Phase Comparator using XOR

- **Phase Locked Loop/Clock Alignment**

What problem it solves? Commonly used in communications, an XOR gate can be used to convert the phase difference to a PWM signal.

Popular Products
- SN74LVC1G86
- SN74AUC1G86

Single Ended to Differential signal

What problem it solves? Dual XOR gate can be used to convert the single ended signal to differential signal with low skew.

Popular Products
- SN74LVC2G86
- SN74AUC2G86
What happens if $V_I > V_{CC}$?

* Positive sign indicates sinking current, negative current indicates sourcing current.

6.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>-0.5</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_I</td>
<td>-0.5</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_O</td>
<td>-0.5</td>
<td>6.5</td>
<td>V</td>
</tr>
</tbody>
</table>

* Positive sign indicates sinking current, negative current indicates sourcing current.
Partial Power Down

- **Bias V_{CC}**
- **Power-Up 3-State**
- **I_{OFF}**
 - L3 – Live Insertion
 - L2 – Hot Insertion
 - L1 – Partial Power Down

Electrical Isolation

- **Allows voltage on Input/output when $V_{CC} = 0$**
- **Prevents input/output signal inversion during power-up or power-down**

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CC}</th>
<th>$-40^\circ C$ to $85^\circ C$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_I or V_O = 5.5 V</td>
<td>0</td>
<td>± 10</td>
</tr>
</tbody>
</table>

Families Supporting Partial Power Down (I_{OFF})

- ABT, ALVT, AVC, AUC, AUP, GTL, GTLP, LV-A, LVC, LVT, VME
What do I do with unused inputs?
Floating logic inputs tend to drift to the logic threshold region and cause excessive current draw from V_{CC}, in addition to oscillation.

Bus Hold

Problem
Floating logic inputs tend to drift to the logic threshold region and cause excessive current draw from V_{CC}, in addition to oscillation.

Solution
Bus-hold circuitry pulls the logic input to its last known state.

Value
Pullup and pulldown resistors are no longer required or recommended. Inputs will not float to unstable levels.
Unused Inputs – What do I do

Utilizing NAND/NOR as Inverting Buffer

What problem it solves?
• Utilizing a NAND gate as an inverter when spare gates are available in multi input gates. In this case, the desired signal needs to be inverted for further comparison.

Popular Products
• SN74AHC1G00-Q1 | SN74AHC00-Q1

Utilizing OR/AND as a Buffer

What problem it solves?
• Utilizing an OR gate as a buffer when spare gates are available in multi input gates. In this case the buffer is being used as a delay between the shift registers.

Popular Products
• SN74AHC1G32-Q1 | SN74LVC32A-Q1
What happens when the inputs has slow rise time?

Bad Circuits

SN74LVC1G175
D-Type Flip-Flop

Oscillations

Slow Rising Edge input results in output oscillations (Inverter)

Excessive Current

\[\frac{1}{2} V_{CC} \]

\[I_{CC} \]
Schmitt-Trigger Overview

TI Information-Selective Disclosure
Logic Use Case: Correcting Slow, Noisy Inputs

Increase Edge Rate w/Schmitt Trigger

- **What problem it solves?**
 - Creates a sharp rising edge for slow rising or noisy input signals to eliminate on/off timing discrepancy.

- **Popular Products**
 - SN74LVC1G17-Q1 | SN74LVC2G17

Mechanical Push Button Debounce

- **What problem it solves?**
 - Creates a single sharp pulse instead of a series of pulses which could trigger the output multiple times on a single button press.

- **Popular Products**
 - SN74LVC14A | SN74LVC2G17-Q1
Logic use case: Adding a time delay

Time Delay using Schmitt Trigger

What problem it solves?
- The RC circuit creates a time delay that can be specified by the user that is then fed into the buffer, returning the pulse of the delay at the output.

Popular Products
- SN74LVC1G17-Q1 | SN74LVC2G17

Rising Edge Time Delay using Schmitt Trigger Buffer

What problem it solves?
- The shown diode added to the RC circuit will allow falling edges to bypass the delay

Popular Products
- SN74LVC1G17-Q1 | SN74LVC3G17

Falling Edge Time Delay using Schmitt Trigger Buffer

What problem it solves?
- The shown diode added to the RC circuit will allow rising edges to bypass the delay

Popular Products
- SN74LVC1G17-Q1 | SN74LVC2G14

TI Information-Selective Disclosure
Do we have gates with Schmitt-trigger inputs?

SN74LVC1G97-Q1

LOGIC FUNCTION
- 2-to-1 data selector
- 2-input AND gate
- 2-input OR gate with one inverted input
- 2-input NAND gate with one inverted input
- 2-input AND gate with one inverted input
- 2-input NOR gate with one inverted input
- 2-input OR gate
- Inverter
- Noninverted buffer

SN74AUP1G99

<table>
<thead>
<tr>
<th>PRIMARY FUNCTION</th>
<th>COMPLEMENTARY FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-state buffer</td>
<td>3-state inverter</td>
</tr>
<tr>
<td>3-state inverter</td>
<td>3-state 2-to-1 data selector MUX, inverted out</td>
</tr>
<tr>
<td>3-state 2-to-1 data selector MUX, inverted out</td>
<td>3-state 2-input AND</td>
</tr>
<tr>
<td>3-state 2-input AND</td>
<td>3-state 2-input AND, 1 input inverted</td>
</tr>
<tr>
<td>3-state 2-input NAND</td>
<td>3-state 2-input NOR, both inputs inverted</td>
</tr>
<tr>
<td>3-state 2-to-1 NAND,</td>
<td>3-state 2-input NAND, both inputs inverted</td>
</tr>
<tr>
<td>3-state 2-input XOR</td>
<td>3-state 2-input NAND, both inputs inverted</td>
</tr>
<tr>
<td>3-state 2-to-1 XOR</td>
<td>3-state 2-input NAND, both inputs inverted</td>
</tr>
<tr>
<td>3-state 2-input XOR</td>
<td>3-state 2-input NAND, both inputs inverted</td>
</tr>
<tr>
<td>3-state 2-input XOR</td>
<td>3-state 2-input NAND, both inputs inverted</td>
</tr>
<tr>
<td>3-state 2-input XOR</td>
<td>3-state 2-input NAND, both inputs inverted</td>
</tr>
</tbody>
</table>

Configurable Gate

2-to-1 Data Selector

2-Input AND Gate
CMOS Output Characteristics

- Nearly Constant Resistance
- Ideal Constant Resistance

- $V_{OL}(\text{max})$
- Max FET Current @ V_{CC}
- $V_{OL}(\text{typ})$

- I_{OL} vs. V_{OL}
- I_{SC} vs. V_{OL}

TI Information-Selective Disclosure
Logic use case: Increasing drive strength

Peripheral driver requiring higher current

What problem it solves?
• Used to increase drive strength between the processor and a peripheral devices. (ex. LED)

Popular Products
• SN74LVC1G07 (Open Drain)
• SN74LV125A-Q1

Parallel Outputs for High Current Drive

What problem it solves?
• When putting two components in parallel their current will add, thus increasing the current drive.

Popular Products
• SN74LVC125A-Q1

*Timing issues can occur if done with buffers from different packages
Logic use case: Improving signal quality

Buffer for long traces

- **What problem it solves?**
 - Used to drive high capacitance lines or long traces.

- **Popular Products**
 - SN74LVC1G17 | SN74LV125A-Q1

Fan Out using Octal Buffer

- **What problem it solves?**
 - Increases current drive from CPU to multiple peripherals
 - Distribute load capacitance

- **Popular Products**
 - SN74AHC244A | SN74LVC244A-Q1

Unidirectional Switch using 3-State Buffer

- **What problem it solves?**
 - Allows for signal to pass when enabled.

- **Popular Products**
 - SN74LVC1G125-Q1 | SN74AUP1G125

Bidirectional communication using Transceiver

- **What problem it solves?**
 - Allows for bidirectional communication between a master and slave device while keeping signal integrity.

- **Popular Products**
 - SN74AHC245-Q1

TI Information-Selective Disclosure
Up/Down Translation using Open Drain Buffer

<table>
<thead>
<tr>
<th>FPGA 1.8V</th>
<th>→</th>
<th>MCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS₁=3.3V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What problem it solves?
- Utilized as flexible voltage translation from a processor to an external peripheral

Popular Products
- SN74LVC1G07 | SN74LVC07A-Q1

Voltage Source Separation using Open Drain Buffer

<table>
<thead>
<tr>
<th>Controller</th>
<th>→</th>
<th>MCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS₁=3.3V from Battery</td>
<td>VS₂=3.3V from system rail</td>
<td></td>
</tr>
</tbody>
</table>

What problem it solves?
- Used to separate two voltage domains

Popular Products
- SN74LVC1G07-Q1 | SN74LVC07A

Wired-AND/OR logic using Open Drain buffer

<table>
<thead>
<tr>
<th>FPGA 1.8V</th>
<th>→</th>
<th>MCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vx=3.3V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What problem it solves?
- One chip solution to integrate Logic-AND function & signal translation using OD buffer (also termed as Wired-AND)

Popular Products
- SN74LVC1G07 | SN74LVC07A
CMOS power consumption

Total Power Consumption

\[P_{\text{TOTAL}} = P_S + P_T + P_{\text{LC}} + P_{\text{LR}} \]

- **Static Power Consumption** \((P_S)\)
 \[P_S = V_{CC} I_{CC\text{(max)}} \]

- **Resistive Load Power Consumption** \((P_{LR})\)
 \[P_{LR} = \sum \left[D_n \left(V_{CC} - V_{OHn} \right) \left(V_{OHn} / R_{Ln} \right) \right] \]

- **Dynamic Power Consumption**
 - **Transient Power Consumption** \((P_T)\)
 \[P_T = C_{pd} V_{CC}^2 f_i N_{SW} \]
 - **Capacitive Load Power Consumption** \((P_{LC})\)
 \[P_{LC} = \sum \left[C_{Ln} f_{On} \right] V_{CC}^2 \]

\(V_{CC}\) := supply voltage
\(I_{CC\text{(max)}}\) := max static supply current (from datasheet)
\(C_{pd}\) := dynamic power-dissipation capacitance (from datasheet)
\(f_i\) := input frequency
\(N_{SW}\) := number of inputs switching
\(C_{Ln}\) := Load capacitance at each output, 1 through n
\(f_{On}\) := Output frequency at each output, 1 through n
\(D_n\) := Duty cycle of output
\(V_{OHn}\) := Output high voltage @ load current (from datasheet)
Understanding Thermal Values

\[\Delta T = P_{TOTAL} R_{\theta JA} \]

Example

\[\Delta T = 100\text{mW} \times 177.4 \, ^\circ\text{C/W} \]

\[\Delta T = 17.7 \, ^\circ\text{C} \]

If operating at 125°C, the junction would increase to

\[125 + 17.7 = 142.7 \, ^\circ\text{C} \]

* The majority of logic devices will never hit the maximum junction temperature if operated within the datasheet limits. \(R_{\theta JA} \) is the most commonly required thermal value.
Logic Use Case: Output expansion with limited I/Os

MCU to Multiple Indicator LED’s using a Shift Register

What problem it solves?
- Used to expand the MCU’s number of outputs for individual LED control

Popular Products
- SN74AHC595-Q1 | SN74HC595

Driving Stepper Motor w/Shift Register

What problem it solves?
- Used to expand the MCU’s number of outputs for stepper motor control

Popular Products
- CD4021B-Q1 | SN74HC595

7-Segment Display using Shift Register

What problem it solves?
- Used to expand the MCU’s number of outputs for 7 segment displays

Popular Products
- SN74AHC595-Q1 | CD4021B
Design Challenges

Building a design that can drive an LED Matrix or 7-segment display in a space-constrained environment and a limited number of outputs

Solution / Value

- Subsystem Adaptable to a Wide Range of Space-Constrained Applications
- Only Three GPIO Pins Required to Drive Any Multiple of Eight Channels
- X1QFN smallest available logic packaging for high pin count devices
- Total Solution size fits within the board area of a single 7 segment display

Blog: The next-generation QFN: Do you have what it takes to use it?

TIDA-01233
Logic Use Case: Clock division and Flip-Flop

Clock Division using D-Flip Flop

- What problem it solves?
 - Used when a user wants to decrease clock frequency

- Popular Products
 - SN74LVC1G374 | SN74AHC74Q-Q1

Multiple Clock Divisions using counter

- What problem it solves?
 - Utilized when a 2^n clock division is required
 - For example, a 4 bit counter can do a 16x clock division

- Popular Products
 - SN74HC163-Q1 | SN74HC193

Buck converter control using SR Flip Flop

- What problem it solves?
 - Synchronous buck controller using SR flip flop
 - Controlled timing of Pass FET and reverse current FET

- Popular Products
 - SN74AUP1G74 | SN74LVC2G74

TI Information-Selective Disclosure
Translation by Interface: Serial Peripheral Interface (SPI)

Does your system have a SPI interface to a peripheral such as:

- Bluetooth Low Energy Module
- GPS Module
- WiFi Module
- Sensors (Image, Temp, Pressure, etc.)
- Accelerometer
- Memory

Why: Simultaneous Individually Addressable Communication between central processor and peripheral

Key Careabouts:
- Push-Pull Architecture
- 4 Individual Channel Direction Control
- Low Current Consumption

Recommendation:
- TXB0104-Q1
- SN74AXC4T774-Q1*

Data Rate → 200 Mbps
- Bit Count → 3 or 4
- Voltage → 1.8 to 3.3V
Direction Controlled Translation Use-Cases
Audio Encoding with Inter-IC Sound (I²S) or Pulse-Code Modulation (PCM)

Does your system have an audio codec ADC or DAC communicating over I²S or PCM with a CPU or DSP?

Why: Bidirectional Support and Signal Redriving with Translation

Key Careabouts:
- Push-Pull Architecture
- 2 by 2 Channel Direction Control
- Bit Count → 3 to 4
- Data Rate → 48 Mbps
- Voltage → 1.8 to 3.3V

Recommendation:
- SN74AVC4T245-Q1
- SN74AXC4T245-Q1

Does your I²S or PCM signaling require individual channel control?

Why: Bidirectional Support with individual channel control

Key Careabouts:
- Push-Pull Architecture
- 4 Individual Channel Direction Control
- Bit Count → 4
- Data Rate → 48 Mbps
- Voltage → 1.8 to 3.3V

Recommendation:
- TXB0104-Q1
- SN74AXC4T774-Q1
Direction Controlled Translation Use-Cases
Peripheral Interface with Universal Asynchronous Receiver-Transmitter (UART)

Does your system have a UART interface to a peripheral such as:
- Bluetooth Low Energy Module
- GPS Module
- Sensors (Image, Temp, Pressure, etc.)
- Memory
- Secondary Microcontroller
- USB to UART Bridge

Why: Simultaneous Bidirectional Communication between central processor and peripheral

Key Careabouts:
- Push-Pull Architecture
- 2 by 2 Channel Direction Control
- Low Current Consumption
- Bit Count → 4
- Data Rate → 20 Mbps
- Voltage → 1.8 to 3.3V

Recommendation:
SN74AVC4T245
SN74AXC4T245-Q1

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 FCS Ready
Does your system utilize JTAG to provide in-system programming or debug?

Why: Simultaneous Individually Addressable Communication with Translation

Does your debug port run on a reduced pin count JTAG with only 2 pins?

Why: Unidirectional Translation and Redriving

Key Careabouts:
- Push-Pull Architecture
- **4 Individual Channel Direction Control**
- Bit Count → 4
- Data Rate → 200 Mbps
- Voltage → 1.8 to 3.3V

Recommendation:
- SN74AVC4T774
- SN74AXC4T774-Q1

Key Careabouts:
- Push-Pull Architecture
- **2 Bit Unidirectional**
- Bit Count → 2
- Data Rate → 200 Mbps
- Voltage → 1.8 to 3.3V

Recommendation:
- SN74AVC2T45
- SN74AXC1T45
Unidirectional translation: 2N7001T

Discrete FET replacement with Unidirectional level shifter

What problem it solves?
- Replace discrete FETs using TI's unidirectional translation gates

Popular Products
- 2N7001T-Q1 | SN74AUP1T34-Q1

LED driving using Unidirectional level shifter

What problem it solves?
- Drive a LED indicator using unidirectional translation

Popular Products
- 2N7001T-Q1 | SN74AUP1T34-Q1 | SN74LV1T34
What problem it solves?
- Activates a reset when thermal sensor error occurs or system reset input sent to processor

Popular Products
- SN74AHC1G32-Q1 | SN74LVC32A-Q1

What problem it solves?
- Identifies power good status of the system, where multiple DC-DCs are used. Low cost method of system power good implementation instead of using processor GPIOs for individual power good signals.

Popular Products
- SN74LVC1G08-Q1 | SN74HC21A-Q1
What problem it solves?
• Translates I²C / I2S communication signals between processor and peripherals (Audio DSP / CMOS sensor) which are at different IO voltage levels (3.3V to 1.8V).

Popular Products
• TXB0104-Q1 | TXS0102-Q1 | LSF0102-Q1

What problem it solves?
• Activates a reset when thermal sensor error occurs or system reset input sent to processor

Popular Products
• SN74AHC1G32-Q1 | SN74LVC32A-Q1

What problem it solves?
• Identifies power good status of the system, where multiple DC-DCs are used. Low cost method of system power good implementation instead of using processor GPIOs for individual power good signals.

Popular Products
• SN74LVC1G08-Q1 | SN74HC21A-Q1

What problem it solves?
• Used to increase drive strength between the processor and indicator LED

Popular Products
• SN74LVC1G125-Q1 | SN74AHCT1G125-Q1
Selecting the Right Voltage Level Translator for Common Interfaces
Quick Select for Translation Devices

Select by Interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>2 Ch</th>
<th>4 Ch</th>
<th>6 Ch</th>
<th>8 Ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI</td>
<td>--</td>
<td>AVC4T774 TXB0104</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>UART</td>
<td>--</td>
<td>AVC4T774 TXB0104</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>JTAG</td>
<td>--</td>
<td>AVC4T774 TXB0104</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>I2S</td>
<td>--</td>
<td>TXB0104 AVC4T245</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>I2C</td>
<td>TXS0102 LSF0102</td>
<td>TXS0104E LSF0204</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>MDIO</td>
<td>TXS0102 LSF0102</td>
<td>TXS0104E LSF0204</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>SMBus</td>
<td>TXS0102 LSF0102</td>
<td>TXS0104E LSF0204</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>RMI/FGMII</td>
<td>--</td>
<td>TXB0106</td>
<td></td>
<td>AXC8T245</td>
</tr>
<tr>
<td>Quad-SPI</td>
<td>--</td>
<td>TXB0106</td>
<td>TXB0108</td>
<td></td>
</tr>
<tr>
<td>SDIO</td>
<td>--</td>
<td>TXS0206 TXS0206-29</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>IC-USB</td>
<td>--</td>
<td>AVC2T8T2 TXS0202</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SD/MMC</td>
<td>--</td>
<td>TXS0206 TXS0206-29</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Select by Translation and Supply Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Supply</th>
<th>1 Ch</th>
<th>2 Ch</th>
<th>4 Ch</th>
<th>8 Ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Bidirectional (Dual Supply)</td>
<td>1.65 – 5.5V</td>
<td>TXS0101</td>
<td>TXS0102</td>
<td>TXS0104E</td>
<td>TXS0108E (1.2 – 5.5V)</td>
</tr>
<tr>
<td></td>
<td>1.2 – 5.5V</td>
<td>TXB0101</td>
<td>TXB0102</td>
<td>TXB0104</td>
<td>TXB0108</td>
</tr>
<tr>
<td></td>
<td>0.95 – 5.5V</td>
<td>LSF0101</td>
<td>LSF0102</td>
<td>LSF0204</td>
<td>LSF0108</td>
</tr>
<tr>
<td>Direction Controlled (Dual Supply)</td>
<td>0.65-3.6</td>
<td>AXC1T45</td>
<td>--</td>
<td>--</td>
<td>AXC8T245</td>
</tr>
<tr>
<td></td>
<td>1.2-3.6</td>
<td>AXC1T45</td>
<td>AVC2T45</td>
<td>AVC4T245</td>
<td>AXC8T245</td>
</tr>
<tr>
<td></td>
<td>1.65-5.5</td>
<td>LVC1T45</td>
<td>LVC2T45</td>
<td>--</td>
<td>LVC8T245</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>1.65-5.5V</td>
<td>LV1T125</td>
<td>--</td>
<td>LV4T125</td>
<td>--</td>
</tr>
<tr>
<td>Dual Supply</td>
<td>0.65 – 3.6V</td>
<td>AXC1T45</td>
<td>AVC2T244 (0.9 - 3.6V)</td>
<td>AVC4T234 (0.9 - 3.6)</td>
<td>AXC8T245</td>
</tr>
<tr>
<td>Translating Gates AND, OR, NOR... (Single Supply)</td>
<td>2.3-3.6</td>
<td>SN74AUP1T Family</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1.65-5.5V</td>
<td>SN74LV1T Family</td>
<td>--</td>
<td>LV4T125</td>
<td>--</td>
</tr>
</tbody>
</table>
Auto-Bidirectional Translators

<table>
<thead>
<tr>
<th>Metrics</th>
<th>TXB</th>
<th>TXS</th>
<th>LSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive strength</td>
<td>Very low drive of 20ua due to 4K buffer</td>
<td>Passive translation with NMOS; no drive</td>
<td>Passive translation with NMOS; no drive</td>
</tr>
<tr>
<td>Applications/ Interface</td>
<td>Mostly suitable for push-pull applications</td>
<td>Suitable for open drain applications</td>
<td>Push pull and open drain applications</td>
</tr>
<tr>
<td>Speed</td>
<td>Up to 140Mbps</td>
<td>Up to 24Mbps</td>
<td>High speed up to 200Mbps</td>
</tr>
<tr>
<td>Translation flexibility</td>
<td>Buffered; Fixed translation</td>
<td>Integrated 10k resistors-reduces BOM cost of the system; but inflexible</td>
<td>Flexible translation due to external resistors</td>
</tr>
<tr>
<td>I/O ports</td>
<td>Referenced to Vcca or Vccb</td>
<td>Referenced to Vcca or Vccb</td>
<td>Multi-voltage translation in single device</td>
</tr>
<tr>
<td>Edge- acceleration</td>
<td>Integrated one-shot</td>
<td>Integrated one-shot</td>
<td>No integrated one-shot</td>
</tr>
<tr>
<td>Vih/Vil requirements</td>
<td>Datasheet spec has Vih/Vil</td>
<td>D/S has Vih/Vil spec, no Ron for the FET</td>
<td>No Vih / Vil conditions, has Ron spec</td>
</tr>
<tr>
<td>Additional care-about</td>
<td>Vcc<=Vccb</td>
<td>Vcca<=Vccb</td>
<td>Vccb>Vcca+0.8</td>
</tr>
</tbody>
</table>

Driver strength

Very low drive of 20ua due to 4K buffer provides a passive translation with NMOS; no drive.

Applications/ Interface

Mostly suitable for push-pull applications.

Speed

Up to 140Mbps for TXB, up to 24Mbps for TXS, and high speed up to 200Mbps for LSF.

Translation flexibility

Buffered; Fixed translation for TXB, integrated 10k resistors reduces BOM cost of the system; but inflexible for TXS.

I/O ports

Referenced to Vcca or Vccb for both TXB and TXS, and multi-voltage translation in single device for LSF.

Edge- acceleration

Integrated one-shot for TXB and TXS, no integrated one-shot for LSF.

Vih/Vil requirements

Datasheet spec has Vih/Vil for TXB, D/S has Vih/Vil spec, no Ron for the FET for TXS, and no Vih / Vil conditions, has Ron spec for LSF.

Additional care-about

Vcc<=Vccb for TXB, Vcca<=Vccb for TXS, and Vccb>Vcca+0.8 for LSF.
Voltage level translator product portfolio

Unidirectional
- 1-,2-,4-bit
- Level translating
- Fast translation (190Mhz)
- Low Power (1mA)

Specific application
- Sensor I/F
- LV chipset IO
- PC/Compute Control IO

Hero Parts
- 2N7001T
- SN74AUP1T34
- SN74AVC4T234
- SN74AVC2T244

Direction controlled
- 1-,2-,4-,6-, 8-, 16-, 24-,32-bit
- Level translating
- High Speed (190Mhz)
- Push-pull Ios
- Low Power (60uA)

Specific application
- SPI, UART
- I2S
- IC-USB
- JTAG
- RGMII

Hero Parts
- SN74LVC8T245
- SN74AXC8T245
- SN74AXC1T45
- SN74AVC4T774

Auto-Direction sensing
- 1-,2-,4-,6-,8-bit
- Level translating
- High Speed 100Mhz
- Push-pull Ios, Open-drain Ios
- Most versatile solutions

Specific application
- SD Card
- SIM Card
- IC-USB

Hero Parts
- TXS0102
- TXB0304
- TXB0108
- LSF0108

Translation + Logic Gates
- 1-, 4-bit
- Level translating
- Perform Logic function + Translation
- Fast Operation (190Mhz)
- Low Power (1mA)

Specific application
- Chipset logic
- Control logics for compute
- Control logic for comms

Hero Parts
- SN74LV1T00
- SN74AUP1T08
- SN74LV1T34
- SN74AUP1T57
Backup: Logic Special Features
Floating logic inputs tend to drift to the logic threshold region and cause excessive current draw from V_{CC}, in addition to oscillation.

Problem

Solution

Bus-hold circuitry pulls the logic input to its last known state.

Value

Pullup and pulldown resistors are no longer required or recommended. Inputs will not float to unstable levels.
Problem

Signal integrity issues due to noise on edges at output

Solution

Series damping resistors slow edges and provide better impedance matching and line termination

Value

Eliminates the need for external series resistors

RLC current impulse response

https://en.wikipedia.org/wiki/RLC_circuit

TI Information-Selective Disclosure
Partial Power Down

L3 – Live Insertion
L2 – Hot Insertion
L1 – Partial Power Down

Electrical Isolation

- Allows voltage on output when $V_{cc} = 0$
- Prevents unexpected device behavior during power-up or power-down
- Prevents signals from sourcing current through parasitic diodes
- Allows for power down of partial circuits within a system
- I_{OFF} spec is required for partial power down operations
- Explanation of IOFF and the three levels of electrical protection

Families Supporting Partial Power Down (I_{off})

ABT, ALVT, AVC, AUC, AUP, GTL, GTLP, LV-A, LVC, LVT, VME
Hot Insertion

- Problem: Outputs sometimes “follow” VCC at low voltages as VCC ramps
- Power-Up 3-State (PU3S) prevents this “following” until VCC reaches a trip point.
- Prevents bus to be loaded down upon power-up
- I_{OFF} and PU3S specs required for hot insertion
- PU3S App Note

Example Circuit Implementation

Families Supporting Hot Insertion (I_{OFF} and Power-up 3-state)

| ABT, ALVT, GTLP, LVCZ, LVT, VME |
Live Insertion

Bias V_{CC}

- **L3** – Live Insertion
- **L2** – Hot Insertion
- **L1** – Partial Power Down

Electrical Isolation

- **BIAS V_{CC}** Prevents unwanted glitches at the I/O
- **IOFF, PU3S, and BIAS V_{CC}** required for Live Insertion
- Staggered pins require pre-charge functionality
- [Live Insertion App Note](#)

Families Supporting Live Insertion

(I_{OFF}, Power-up 3-state, and BIAS V_{CC})

- ABTE, GTLP, FB, VME

Circuit Implementation

Pre-Charge Circuit

- With pre-charge
- Without pre-charge

TI Information-Selective Disclosure

59
Logic Feature List †

- **Bus Hold – ABT, ALVC, ALVT, AVC, AUC, FCT, GTL, GTLP, LVC, LVT, VME**
 - Bus hold circuitry in selected logic families helps solve the problem of floating inputs and eliminates the need for pull-up or pull-down resistors by holding the last known state of the input. See \(I_{\text{HOLD}} \) or \(I_{\text{BLH}}, I_{\text{BHH}}, I_{\text{BLO}}, \) and \(I_{\text{BHHO}} \) on data sheet. The Bus Hold devices typically have an “H” in the part number.

- **Series Damping Resistors – ABT, ALVC, ALVT, F, GTLP, LVC, LVT, VME**
 - Series damping resistors limit signal overshoot and undershoot by providing better impedance matching and line termination without the need for external resistors.

- **Partial Power Down (Level 1 Isolation - \(I_{\text{off}} \)) – ABT, ALVT, AVC, AUC, AUP, CBTLV, CBT-C, GTL, GTLP LV-A, LVC, LVT, VME**
 - IOFF circuitry prevents the device from being damaged during hot insertion. See IOFF specifications on data sheet.

- **Hot Insertion (Level 2 Isolation – Ioff and Power-up 3-state) – ABT, ALVT, GTLP, LVCZ, LVT, VME**
 - Power-up 3-state ensures valid output levels during power up and valid Z on the outputs during power down. See IOZPU, IOZPD.

- **Live Insertion (Level 3 Isolation – Ioff, Power-up 3-state, and BIAS VCC) – GTLP, FB, CBT, CBTLV, VME**
 - Precharges I/O capacitance, preventing glitching of active data.

- **Mixed-Voltage-Tolerant I/Os and Level Shifting – AVC, ALVC, ALVT, AUC, AUP, GTL, GTLP, LV-A, LVC, LVT**
 - Systems use mixed supply voltages and TLL or CMOS levels in many designs. Most advanced-logic families allow mixed-signal interfacing and provide level-shifting functions for certain mixed-voltage applications.

- **JTAG – ABT, ACT, BCT, LVT**
 (†selected functions)
TI Design: Automotive-Qualified 16-Bit Rotary Quadrature Decoder

Design Challenges

Creating a simple front-end digital decoder for a quadrature encoder (rotary knob), while minimizing processing time from an MCU

Solution / Value

- I2C interface
- Works with any rotary quadrature encoder
- Overvoltage tolerant inputs allow for a wide variety of input voltage ranges
- Voltage translation allows for 2-V to 5-V logic outputs
- Open-drain interrupt output indicates to the MCU when a change has occurred
- Low power standby operation
- Frees up MCU operating time

Visit: ti.com/tidesigns

Part number: TIDA-00580

Rotary decoder circuitry fits inside the red circle, behind the rotary knob