PCB Layout for SMPS

High Voltage Controllers (HVC)
Colin Gillmor, Michael O’Loughlin
Agenda

• Introduction
• The Schematic
• Parasitic Components
• SMPS Characteristics
• PCB Layout – General
• PCB Layout – Effect on EMI
• PCB Layout – An Example
• PCB Layout – Review
• PCB Layout – Things you don’t have to worry about
• PCB Layout – Summary
Introduction

PCB Layout for SMPS
I would suggest that

- The PCB is usually the single most complex custom component in the design
Introduction:

What issues must be considered when laying out a PCB for a Switched Mode Power Supply (SMPS)?

- A high proportion of the PCB layouts I see have critical defects
- The best controller in the world cannot work well if embedded in a poor layout
- PCB layout for SMPS is difficult
- The same general principles govern low and high power layouts –
- The difficulty is how to apply the principles in practice
The Schematic

PCB Layout for SMPS
The Schematic:

Typical schematic of a CCM boost converter
The Schematic:

Typical schematic of a CCM boost converter – Shows about 1/3 of the components!

Does NOT include component or PCB parasitics!

Component parasitics:
- ESR in capacitors
- Coss in MOSFETs
- Leakage inductances

Layout parasitics:
- Track resistance
- Stray capacitances
- Stray inductances

Key to a successful layout is understanding the circuit, including the parasitic components.
Parasitic Components

PCB Layout for SMPS
Parasitics: Know their Effects

You get parasitic components for free, but you have to pay a performance penalty for them.

Ideal components DO NOT EXIST

• Capacitors have ESR, ESL, C varies with Temp and V
• Inductors have inter-winding C
• Leakage inductance in transformers
• Stray capacitances around MOSFETs
• Even Resistors have parasitic L and C
• PCB tracks have R, L and C

• This is NOT an exhaustive list
Parasitics: Capacitance

Building a capacitor is easy – two conductors separated by an insulator. No simple formula for the general case – (non standard geometries)

For a flat plate capacitor

\[C = \varepsilon_0 \varepsilon_r \frac{A}{d} \]

Permittivity of free space \(\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1} \)
Relative permittivity \(\varepsilon_r \approx 4.4 \) (Fiberglass)

Stray capacitance should be minimized
Parasitics: Inductance

Building an inductor is even easier – inductance is a measure of the energy contained in the magnetic field set up by an electric current – all you need is a conductor with a current in it.

Simple formulae exist for specific geometries – toroids, E cores etc.

In general no simple formula for stray inductance. ‘Shorter is better’ 1nH per mm – rule of thumb.

Wider tracks = lower parasitic L
Parasitics: Resistance

All conductors exhibit resistance – (except superconductors).

- Simple formulae exist for specific geometries
- Sheet Resistivity: \(R_{\text{sheet}} = \rho \frac{l}{A} \)
- \(\approx 500\mu\Omega \) per square for 1oz (34\(\mu \)m) cu

This is important where currents are high

Current sensing resistors – 20 m\(\Omega \) typical

Copper has a large temperature co-efficient of resistance
\(TCR_{\text{cu}} \approx 4000 \text{ ppm} \degree C^{-1} \) (+40% for 100\(^\circ\)C rise)

Blog: Why should I count squares

\(R_{\text{CS}} \) is comparable to \(R_{\text{SHEET}} \)

Must provide quality return path in presence of large currents
- Use Kelvin (4 wire) connections

\[4 \times 500\mu\Omega = 2m\Omega \]
SMPS – Characteristics

PCB Layout for SMPS
Understand the operation of the circuit:

Identify the loops with high $\frac{di}{dt}$
- Especially the paths where the current is switched on and off
- Stray inductance here will cause voltage spikes

Identify the nodes with high $\frac{dv}{dt}$, (switched nodes)
- Stray capacitance will couple noise currents into other nodes

Identify the lines with high DC (or low frequency AC) currents.
- Resistance causes voltage drops and control errors

Identify the signal connections
- These are susceptible to having noise coupled onto them (Victims)
- Noise can cause control upsets – jitter, instability etc.
PCB Layout: Switched Loops (High \(\text{di/dt} \))

Inductor current is switched alternately between MOSFET and Diode paths

- Pulsating currents in Diode and MOSFET paths – o/p Loop (Red/Blue)
- Inductance in the high \(\text{di/dt} \) paths will cause voltage spikes
 - \(\text{i/p loop inductance less critical} \)
 - \(\text{di/dt rates much lower} \)

\(\text{Cin provides local low impedance source} \)

Simplified schematic of a CCM boost converter
PCB Layout: Switched Nodes (High dv/dt)

High dv/dt at switched node (Blue)
Switched between 0V and V_{OUT}

- High dv/dt rates imply node capacitance MUST be minimised

- Currents proportional to the stray capacitance between switched node and other circuit nodes

- Implies unwanted noise pickup
 MOSFET Heatsink adds capacitance
 Floating heatsink => high EMI
 Ground the heatsink!

- Other nodes are at DC or AC ground

Minimise total conductor area at this node. Short narrow tracks. Inductor, MOSFET and Diode terminals as close together as possible. Low C much more important than low R.

\[i = c \frac{dv}{dt} \]
PCB Layout: Reverse Recovery Effects (High di/dt)

MOSFET Turns ON

Diode Reverse Recovery Charge flows in yellow Loop

Stray inductance in this loop => Large di/dt when diode stops conducting

Result is large voltage spikes

Use rectifiers with low Q_{RR} –
SiC for high V_{out}.
Schottky Diodes
Ultra fast diodes
Sync rectifiers with low Q_{RR}

Minimise Loop Inductance

Seen in all non ZCS topologies

Boost
Buck (incl Sync Buck)

Reinforces the need to understand the switching paths in the topology you are using
PCB Layout: Switched Nodes: Gate Drives

High dv/dt at switched node (blue)
Hi di/dt in gate drive loop (yellow)
• High peak currents
• Minimise loop inductance

Study your schematic
• Know the paths with high di/dt - minimise INDUCTANCE
• Know the nodes with high dv/dt minimise CAPACITANCE
PCB Layout: Switched Nodes: Snubbers

Snubbers absorb unclamped inductive energy

- High di/dt rates with high instantaneous currents
- High dv/dt rates
- High Temperatures due to power dissipation
PCB Layout: Phase Shifted Full Bridge

- Minimise inductance in loops (Red, Green)
- Minimise size of switched nodes – red dots

\[I_{QA}, I_{QB}, I_{QC}, I_{QD}, I_{QF}, I_{QE}, I_{Pri}, I_{Lout} \]
Low power but often used in off line applications where Vin is high

Input and Output currents are pulsating

Gate drive currents as before

High dv/dt rates at the MOSFET drain – red dot
PCB Layout - General

PCB Layout for SMPS
PCB Layout: Layer assignment

How many layers?

- Single Layer: Lowest cost – consumer goods, TV, domestic appliances etc.
- Two Layer: One signal and one power, ground planes are possible
- Four Layer: Medium complexity digital/mixed signal boards. Two signal and two ground layers. > 4 layers: Luxury!
- Spacing between layers is potentially important
- What process is to be used to build the product – reflow + wave or wave only etc.
- Many constraints on component placement, spacing, orientation etc. etc.
Ground Planes:

Ground Plane – an infinite, equipotential surface

When is a ground plane not a ground plane?
- When it has a slot in it – current has to flow around the slot – increased loop area, increased Inductance and impedance
- When the currents flowing cause significant voltage drops (Significant depends on context)

Use under ICs to provide E field screening and clean GND reference

Currents flow in the lowest impedance path – black is outward current on a top side track, red is the return current in the ground plane

Yellow is a better top side routing around a slot
Ground Planes:

Don’t put slots in the ground plane
• Or if you do be careful

Ground planes are not possible on a single sided board
• Take extra care to minimise the impedance in the ground connections in a Single Sided Board
• Low impedance from AGND to PGND is desirable
• Place as much grounded copper under the IC as possible
• Remember that DC tracks are an AC Ground
Stray Capacitance couples noise onto sensitive nodes –

- V and I sensing inputs, FB pins, Slope Comp, Ramp, Timing Cap etc.

Example – CS signal

- Place R_F and C_F AT the IC pins
- Good ground connection from C_F

 Ground connections are ALWAYS important and often neglected

- Minimise the unfiltered track length
- Maximise the separation
 - Move the source, Reduce C_{stray}

C_{stray} couples to long track
R_F, C_F ineffective
Large, noise signal at IC

Good ground connections
Noise signal is filtered
Lower noise signal at IC
Stray Capacitance couples noise onto sensitive nodes –

- V and I sensing inputs, FB pins, Slope Comp, Ramp, Timing Cap etc.

Example – CS signal

- Place R_F and C_F AT the IC pins
- Good ground connection from C_F

 Ground connections are ALWAYS important and often neglected

- Minimise the unfiltered track length
- Maximise the separation
 - Move the source, Reduce C_{stray}
Parasitics: Trading off L & C

- Capacitance is proportional to the area of the plates supporting the electric field.
- Inductance is proportional to the area of the loop enclosed by the current.

- There is an INHERENT trade-off.

Low capacitance tracks will have high inductance:
- Long, thin tracks with large signal to ground separation.

Low inductance paths will have high capacitance:
- Short, wide tracks with minimum area enclosed.
10.1 Layout Guidelines

In order to increase the reliability and robustness of the design, TI recommends the following layout guidelines.

- VREF pin: Decouple this pin to GND with a good quality ceramic capacitor. A 1-uF, X7R, 25V capacitor is recommended. Keep VREF PCB tracks as far away as possible from sources of switching noise.
- EA+ pin: This is the non-inverting input to the error amplifier. It is a high impedance pin and is susceptible to noise pickup. Keep tracks from this pin as short as possible.
- EA- pin: This is the inverting input to the error amplifier. It is a high impedance pin and is susceptible to noise pickup. Keep tracks from this pin as short as possible.
- COMP pin: The error amplifier compensation network is normally connected to this pin. Keep tracks from this pin as short as possible.
- SS/EN pin: Keep tracks from this pin as short as possible. If the Enable signal is coming from a remote source then avoid running it close to any source of high dv/dt (MOSFET Drain connections for example) and add a simple RC filter at the SS/EN pin.
- DELAB, DELCD, DELEF, TMIN, RT, RLOU, DCM, ADELF, and ADEL pins. The components connected to these pins are used to set important operating parameters. Keep these components close to the IC and provide short, low impedance return connections to the GND pin.
- CS pin: This connection is arguably the most important single connection in the entire PSU system. Avoid running the CS signal traces near to sources of high dv/dt. Provide a simple RC filter as close to the pin as possible to help filter out leading edge noise spikes which will occur at the beginning of each switching cycle.
- SYNC pin: This pin is essentially a digital I/O port. If it is unused, then it may be left open circuit or tied to ground via a 1-kΩ resistor. If synchronisation is used, then route the incoming Synchronisation signal as far away from noise sensitive input pins as possible.
- OUTA, OUTB, OUTC, OUTD, OUTE and OUTF pins. These are the gate drive output pins and will have a high dv/dt rate associated with their rising and falling edges. Keep the tracks from these pins as far away from noise sensitive input pins as possible. Ensure that the return currents from these outputs do not cause voltage changes in the analog ground connections to noise sensitive input pins. Follow the layout recommendation for Analog and Power ground planes in Figure 45.
- VDD pin: This pin must be decoupled to GND using ceramic capacitors as detailed in the 'Power Supply Recommendations' section. Keep this capacitor as close to the VDD and GND pins as possible.
- GND pin. This pin provides the ground reference to the controller. Use a Ground Plane to minimize the impact of the ground plane and to reduce noise pickup.

Take a ‘Walk’ around the pins
PCB Layout: Tracking

VREF pin. Keep VREF PCB tracks as far away as possible from sources of switching noise and decouple it to GND with a good quality ceramic capacitor.

EA+ and EA- pins. High impedance pins, susceptible to noise pickup. Keep tracks as short as possible.

COMP pin. Keep tracks as short as possible.

SS/EN pin. Keep tracks as short as possible, avoid running it close to any source of high dv/dt and add a simple RC filter at the pin.

The components connected to these pins set operating parameters. Keep them close to the IC and provide low impedance return paths to GND.
PCB Layout: Tracking

GND pin. Use a Ground Plane to minimize the impedance of the connection here.

VDD pin. Decouple to GND. Keep the capacitor as close to the VDD and GND pins as possible.

These pins are the gate drive and SYNC output pins and will have a high dv/dt. Keep the tracks from these pins as far away from noise sensitive input pins as possible.

CS pin. This connection is arguably the most important single connection in the entire PSU system. Avoid running the CS signal traces near to sources of high dv/dt. Put a RC filter at (not close to) the pin.
PCB Layout: Tracking

Vias used to connect the blue and red ground planes.
PCB Layout: Regulatory requirements

• Safety Agencies will control:
 – The PCB material used
 – Creepage distances – shortest path between two parts along the SURFACE
 • Grooves don’t count if less than a certain width
 – Clearance distances – shortest path between two parts through air
 • PCB slots can be used to increase creepage – but not always clearance
 – The use of Basic, Reinforced and Supplementary Insulation
• The Standard is the ultimate reference
• Usually UL60950 / EN60950 / EN 62368-1 or similar, depends on the application
PCB Layout – Effect on EMI

PCB Layout for SMPS
Transformer:

The transformer is the second most complex custom component in the design – after the PCB

Magnetics design has a BIG influence on EMI and performance – Efficiency etc.

Leakage inductance
Wire size and type
Safety Isolation
Physical construction of windings
Core Gapping
Internal Screens between primary and secondary

Some tips for transformers

- Cancellation windings
- Study skin and proximity losses
- Internal Screens from pri to sec
- Grounded ‘Belly Bands’
- Quiet ends of windings at outside
- Swap pins to make layout easier

More information at
Transformer Design:

Transformer is much, much more than simply its turns ratio and magnetizing inductance.

Get a DETAILED construction diagram from the manufacturer.

Or

Disassemble a sample and STUDY its construction!

‘Belly’ band to reduce external E and H field.
Conducted EMI: Common Mode and Differential Mode

CM sources
- Transformer (mainly)

DM sources
- Switched currents, high di/dt
- Switched nodes, high dv/dt

Strategy
- Minimise the source
 - Cheap, but requires thought
- Maximise the filtering
 - Expensive, requires lots of work

Common mode noise:
- Three wire system (at least), Out L1, L2 return via GND
- Transformer is main source of CM currents

Good Layout can SIGNIFICANTLY
- Reduce the generated signal
- Improve the Filter performance
Conducted EMI: Common Mode and Differential Mode

Avoid creating parasitic capacitances across the inductors
- Separate the input and output tracks
- Avoid unwanted mutual inductances – eg between L_{CM} and L_{DM} or L_{PFC}

Avoid creating parasitic inductances in series with the capacitors
- Keep leads short

Try to lay the filter out ‘in a straight line’
- C_X, C_Y must have safety approvals
- C_F is a filter capacitor
- L_{CM} is a common mode choke
 - (BALUN)
- L_{DM} is a differential mode choke
- C_{IN} is the PFC input cap

Route tracks directly to pins of Ls & Cs
Conducted EMI: Common Mode and Differential Mode

Conducted EMI
LISN provides standard line impedance
L1 and L2 are measured, AVG and QP*
150kHz to 30 MHz

Radiated EMI
Bi-Conic antenna feeds receiver.
30MHz to 1GHz
Vert and Horiz
SMPS in all orientations

3m in Anechoic Chamber
Or
10m Open Air Test Site

*Avg and QP limits are specified.
Mfrs often test AVG and PK
because it is much faster and
if pass PK then pass QP is assured
PCB Layout – An Example

PCB Layout for SMPS
PCB Layout: Givens

PCB size (Too small, but no point in complaining !)
PCB type – layers, layer spacing, material
Position and type of Inlet and Outlet connections
Manufacturing Process – constraints
Standards to be met – IEC60950 / IEC62638-1 etc.
Know which parts are ‘important’ – write down the list
Know which loops and nodes are ‘important’
Know the creepage and clearance requirements
Know the heatsinking and clearance requirements
Imagine a general ‘Flow’ and begin to place the large components - Trunk Packing Algorithm
PCB Layout: Component Placement

Place the large parts in the power circuit first

• Trunk Packing Algorithm

Where should the controller go?
PCB Layout: Component Placement

Place the large parts in the power circuit first

Reserve a ‘quiet’ location for the controller

• NOT under transformer or node with high \(\frac{dv}{dt} \)
 • Place its associated parts nearby

Reserve an area for the input filter

• Keep filter input away from output

Use ‘rats nest’ to simplify connections

• Rotate, Reposition, Reassign pins, Repeat

This is a typical small Flyback layout
PCB Layout: Tracking

Typical small flyback – 2 layers

Minimise area of current loops

Minimise area of switched nodes

Ground planes under ICs

CS signal and return paths, short and low noise

Gnd Plane in White
SR Drive GND in GRN
SR Controller IC in Blue

Output Loop

Input Loop

Gnd Plane in White
Controller GND in GRN
Controller in Blue
PCB Layout – A Review

PCB Layout for SMPS
PCB Layout: Review – PMP8740, 2kW PSFB, UCC28950

Use of Ground planes reduces loop impedance

Yellow and Green loops are as small as possible

Controller

Input Capacitor (green outline) located as close to bridge as possible
PCB Layout: Review — PMP8740, 2kW PSFB, UCC28950

Two layer PCB
Ground plane under controller and associated components
Two layer PCB

- Bottom Layer

Current Transformer signal, Away from noisy lines

CS Filtering at CS pin

Gate drives kept away from input signals

*used to set up Fsw etc.

Ground plane under controller

VCC Decoupling AT IC

AC Ground trace under IC (VCC)

Programming parts* tied into ground plane, short connections to IC Pins
PCB Layout – Things you don’t have to worry about

PCB Layout for SMPS
Transmission Lines and Controlled Impedance

Transmission line:

- Length of line is more than about 10% of the wavelength of the highest frequency of interest.

Assume a gate driver with a rise time of 10ns, the highest frequency component is about 30MHz with a wavelength of 10m. Transmission line effects won’t be important unless the path is more than about 1m.
PCB Layout: Other considerations

Transmission Line effects
Controlled Impedance
Delay matching
Propagation delay
Speed of Light (30 cm per ns)

None of these are especially important in SMPS layouts but it’s worthwhile knowing that they exist.
PCB Layout – Summary

PCB Layout for SMPS
PCB Layout

FINISHED ?
PCB Layout

FINISHED ? NO – a PCB layout is NEVER finished!

Take at least a half a day to review and rework the layout
Reviews ALWAYS improve the board

Use an INDEPENDENT reviewer –
one who can criticise, complain, compliment and help correct the layout.
If you take only one idea from this talk – take this one.
PCB Layout

FINISHED ? NO – a PCB layout is NEVER finished!

Take at least a half a day to review and rework the layout
Reviews ALWAYS improve the board

Use an INDEPENDENT reviewer –
one who can criticise, complain, compliment and help correct the layout.
If you take only one idea from this talk – take this one.

(You can always get your revenge return the compliment at a later date !)
Conclusions & Key Take-Aways

• The Schematic shows only some of the components
 – You need to know where the others are

• A full understanding of circuit operation is necessary

• Knowledge of parasitic elements in components AND in PCB tracks is key

• PCB Layout must take account of parasitic Inductance, Capacitance, Resistance

• EMI results are significantly affected by:
 – Transformer design, power circuit and input filter layout

• REVIEW, RELAYOUT, REPEAT – Before you build the board
References:

• PMP8740 design review at: https://www.ti.com/seclit/ml/slup349/slup349.pdf

• The PCB is a component of op amp design: http://www.ti.com/lit/an/slyt166/slyt166.pdf

• Blog: http://e2e.ti.com/blogs_/b/powerhouse/archive/2016/10/03/why-should-i-count-squares
Thank You

Colin Gillmor, Michael O’Loughlin