Optimization of Data Acquisition System

A detailed look at optimizing your input and reference drive circuits for lowest noise and distortion

Jason Wu
Analog FAE
jason_wu@ti.com
Agenda

• System Specification
• Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design
• Verification & Summary
• Appendix: Introduction to TI Design and Precision Labs
Agenda

• System Specification
 • Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design
• Verification & Summary
• Appendix: Introduction to TI Design and Precision Labs
“This is about the System, not the ADC”

• Customers often ask us why their SAR ADC is not performing to spec
 – ADC output not settling
 – Output is too noisy
 – Saturated output codes and behaving like a lower resolution device

• In most cases we find that customer’s input or reference drive circuits are unsuitable for their application => It’s about the system!

• Each application sets unique design goals
 – DC vs. AC performance
 – Performance vs. Power vs. Throughput

• SAR ADCs are highly versatile but to get the best out of a SAR ADC trade-offs must be made to optimize drivers for specific application
System Spec: Lowest Distortion and Noise @ 1MSPS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal (for 10KHz sine input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD</td>
<td>< -110dB</td>
</tr>
<tr>
<td>SNR</td>
<td>> 98dB</td>
</tr>
<tr>
<td>INL</td>
<td>+/-1.5LSB</td>
</tr>
<tr>
<td>Total Power</td>
<td>< 40mW</td>
</tr>
</tbody>
</table>
Agenda

• System Specification

• Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design

• Verification & Summary

• Appendix: Introduction of TI Design and Precision Labs
Theory of Operation

- Step 1: Choose the appropriate ADC that meets the system specification.
- Step 2: Select the proper input driving amplifier and charge bucket.
- Step 3: Design a high precision reference driver.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal (for 10KHz sine input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD</td>
<td>< -110dB</td>
</tr>
<tr>
<td>SNR</td>
<td>> 98dB</td>
</tr>
<tr>
<td>INL</td>
<td>+/-1.5LSB</td>
</tr>
<tr>
<td>Total Power</td>
<td>< 40mW</td>
</tr>
</tbody>
</table>
Improving System Dynamic Performance

\[
\text{SINAD}_{\text{SYS}} = \frac{V_{\text{SIG,RMS}}}{\sqrt{V^2_{\text{n,TOT,RMS}} + V^2_{\text{HAR,TOT,RMS}}}}
\]

\[
V_{\text{HAR,TOT,RMS}} \approx \sqrt{V^2_{\text{HAR,ADC,RMS}} + V^2_{\text{HAR,INP,RMS}}}
\]

\[
V_{\text{n,TOT,RMS}} \approx \sqrt{V^2_{\text{n,ADC,RMS}} + V^2_{\text{n,INP,RMS}} + V^2_{\text{n,REF,RMS}}}
\]

To get maximum AC performance from the SAR ADC we need to minimize any degradation introduced by the driver circuits.

So we need:

\[
V_{\text{HAR,INP,RMS}} \ll V_{\text{HAR,ADC,RMS}}
\]

\[
V_{\text{n,INP,RMS}} \ll V_{\text{n,ADC,RMS}} \quad \text{and} \quad V_{\text{n,REF,RMS}} \ll V_{\text{n,ADC,RMS}}
\]
Agenda

• System Specification

• Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design

• Verification & Summary

• Appendix: Introduction of TI Design and Precision Labs
ADC Selection

### Parameter	Goal (for 10KHz sine input)
THD | < -110dB
SNR | > 98dB
INL | <+/-1.5LSB
Total Power | < 40mW

Electrical Characteristics (continued)

All minimum and maximum specifications are at AVDD = 3 V, DVDD = 3 V, VREF = 5 V, VCM = VREF / 2 V, and fSAMPLE = 1 MSPS, over the operating free-air temperature range, unless otherwise noted. Typical specifications are at TA = 25°C, AVDD = 3 V, and DVDD = 3 V.

DYNAMIC CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINAD</td>
<td>Signal-to-noise + distortion<sup>(6)</sup></td>
<td>At 1 kHz, VREF = 5 V</td>
<td>98</td>
<td>99.9</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 10 kHz, VREF = 5 V</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 100 kHz, VREF = 5 V</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio<sup>(6)</sup></td>
<td>At 1 kHz, VREF = 5 V</td>
<td>98.5</td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 10 kHz, VREF = 5 V</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 100 kHz, VREF = 5 V</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion<sup>(6)(7)</sup></td>
<td>At 1 kHz, VREF = 5 V</td>
<td>-115</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 10 kHz, VREF = 5 V</td>
<td>-112</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 100 kHz, VREF = 5 V</td>
<td>-102</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

SYSTEM PERFORMANCE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>RESOLUTION</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>NMC</td>
<td>No missing codes</td>
<td>18</td>
<td>Bits</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential linearity</td>
<td>ADS8881C</td>
<td>-0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADS8881I</td>
<td>-0.99</td>
</tr>
<tr>
<td>INL</td>
<td>Integral linearity<sup>(4)</sup></td>
<td>ADS8881C</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADS8881I</td>
<td>-3</td>
</tr>
<tr>
<td>Eo</td>
<td>Offset error<sup>(6)</sup></td>
<td></td>
<td>-4</td>
</tr>
<tr>
<td>PVa</td>
<td>Power dissipation</td>
<td>1-MHz sample rate, AVDD = 3 V</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-kHz sample rate, AVDD = 3 V</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-kHz sample rate, AVDD = 3 V</td>
<td>55</td>
</tr>
</tbody>
</table>
Agenda

• System Specification
• Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design
• Verification & Summary
• Appendix: Introduction of TI Design and Precision Labs
Requirement

- Drive a full-scale 10KHz sinusoidal signal across SAR ADC input sampling capacitor with minimal added distortion and noise
- Need 3 things from input driver
 1. Drive a cap load → low source impedance
 2. Low distortion → high Amp BW
 3. Low noise → low BW
- Opamp buffer requirements
 - Low THD
 - Low noise
 - Other: single 5V supply, RRO, low power
- Anti-aliasing filter requirements
 - Load Regulation
 - Must limit noise but not make opamp unstable
Selecting Amp for Low THD

- Need opamp with much lower distortion than ADC
 - \(\text{THD}_{\text{AMP}} < \text{THD}_{\text{ADC}} - 10\text{dB} = -120\text{dB} \)

- \(\text{THD}_{\text{AMP}} \) generally not a datasheet parameter so how do we pick low THD opamps?
 - Note: Do not use THD+N specification from datasheet for op amp THD
 - \(\text{THD}_{\text{AMP}} \) does not include the effect of noise

- Use GBW \(\rightarrow \) is specified in datasheet

- Opamps that have high GBW have low THD
 - Higher loop gain available over freq to correct for non-linearity

\[
V_{\text{OUT}}(f) = \frac{V_{\text{IN}}(f) \times A(f)}{1 + A(f)\beta(f)} + \frac{\text{NL}(f)}{1 + A\beta(f)}
\]

- \(\frac{\text{NL}}{1 + A\beta} \) is low as long as \(A\beta \) is high
Minimizing Input Buffer Distortion

- Short-list opamps with high GBW and compute THD_{AMP} using dominant components specified on datasheet:
 - $\text{THD}_{\text{AMP}} = 10 \times \log\left(10^{\frac{HD_2}{10}} + 10^{\frac{HD_3}{10}}\right)$

- Inverting configuration better for THD
 - Opamps distort the output as inputs approach limits of input CM range
 - In non-inverting config $\text{Vin}+$, Vin- vary with the input signal → Common-mode distortion
 - Inverting config keeps opamp inputs fixed at $\text{Vin}- = \text{Vin}+ = \text{Vcm}$, which can be suitably chosen → No CM distortion
Input Driver Noise Contribution

- Dominated by the output-referred noise of the opamp buffer $V_{n_AMP_RTO_RMS}$
- Need $V_{n_AMP_RTO_RMS} < \frac{1}{5} \times V_{n_ADC_RMS} \approx 7\mu V$

$$2 \times NG \times V_{n_AMP_RTI_RMS} < 7\mu V_{\text{rms}}$$

$$\sqrt{\left(\frac{\pi}{2} \times BW_{\text{FLT}} \times e^{2}_{n_AMP}\right) + \left(\frac{\pi}{2} \times BW_{\text{FLT}} \times 4kT \frac{R}{2}\right)}$$

- e_{n_AMP} is a datasheet parameter
 - Solving inequality gives $e_{n_AMP} < 5nV/\sqrt{Hz}$

$R_1 = R_2 = R$
Input Drive Amp Selection

Identify single +5V supply RRO opamp with:
1. THD < -120dB
2. Noise density $e_{n,AMP} < 5nV/\sqrt{Hz}$

<table>
<thead>
<tr>
<th>Op amp operated on single +5V supply</th>
<th>Output range [V]</th>
<th>GBW [MHz]</th>
<th>Calculated THD [dBc]</th>
<th>Noise [nV/rtHz]</th>
<th>Iq [mA]</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>THS4031</td>
<td>1.6 to 3.4</td>
<td>200</td>
<td>-</td>
<td>1.6</td>
<td>7.5</td>
<td>SE output</td>
</tr>
<tr>
<td>OPA2836</td>
<td>0.2 to 4.75</td>
<td>118</td>
<td>-132</td>
<td>4.6</td>
<td>1</td>
<td>SE output</td>
</tr>
<tr>
<td>THS4521</td>
<td>0.2 to 4.65</td>
<td>95</td>
<td>-132</td>
<td>4.6</td>
<td>1.14</td>
<td>Fully-diff output</td>
</tr>
<tr>
<td>THS4531</td>
<td>0.2 to 4.75</td>
<td>27</td>
<td>-121</td>
<td>10</td>
<td>0.25</td>
<td>Fully-diff output</td>
</tr>
</tbody>
</table>

THS4031 and OPA2836 meet the criteria for noise density.
Low-Distortion Anti-Aliasing Filter: C_{FLT}

- Anti-aliasing filter limits input path BW to $BW_{FLT} = \frac{1}{2\pi R_{FLT}(2C_{FLT})}$
- How to determine values of C_{FLT}, R_{FLT}?
 - Consider their alternate functions
- C_{FLT} serves as “charge bucket” for charging C_{SH} during sampling
 - C_{SH} charges to V_{FLT} and C_{FLT} loses equivalent amount of charge $\Rightarrow V_{FLT}$ droops
 - Need $C_{FLT} \gg C_{SH}$ so droop is small
 - For droop of $\Delta V_{FLT} \leq 5\%V_{FLT}$ $C_{FLT} \geq 20 \times C_{SH} = 1.18nF$
- Larger C_{FLT} also good for attenuating “kick-back” noise
- C_{FLT} must be C0G/NP0 type for low THD \Rightarrow typically <1uF
 - Stable capacitance over temp, freq, voltage

\[
C_{FLT} = \frac{1}{C_{cm}} + \frac{1}{2C_{cm}} \Rightarrow c_{cm} = 2C_{FLT}
\]

\[
Q_{SH} = \Delta Q_{FLT}
\]

$C_{SH} \times V_{FLT} = C_{FLT} \times \Delta V_{FLT} \leq C_{FLT} \times 0.05 \times V_{FLT}$

$C_{FLT} \geq 20 \times C_{SH}$
Low-Distortion Anti-Aliasing Filter: C_{FLT}

- Anti-aliasing filter limits input path BW to
 \[BW_{FLT} = \frac{1}{2\pi R_{FLT}(2C_{FLT})} \]

- How to determine values of C_{FLT}, R_{FLT}?
 - Consider their alternate functions

- C_{FLT} serves as “charge bucket” for charging C_{SH} during sampling
 - C_{SH} charges to V_{FLT} and C_{FLT} loses equivalent amount of charge $\Rightarrow V_{FLT}$ droops
 - Need $C_{FLT} \gg C_{SH}$ so droop is small
 - For droop of $\Delta V_{FLT} \leq 5%V_{FLT}$
 \[C_{FLT} \geq 20 \times C_{SH} = 1.18nF \]

- Larger C_{FLT} also good for attenuating “kick-back” noise

- C_{FLT} must be C0G/NP0 type for low THD \Rightarrow typically $<1\mu F$
 - Stable capacitance over temp, freq, voltage

\[Q_{SH} = \Delta Q_{FLT} \]
\[C_{SH} \times V_{FLT} = C_{FLT} \times \Delta V_{FLT} \leq C_{FLT} \times 0.05 \times V_{FLT} \]
\[C_{FLT} \geq 20 \times C_{SH} \]
Low-Distortion Anti-Aliasing Filter: R_{FLT}

- C_{FLT} makes the opamp buffer unstable
 - Introduces low-freq pole at $\frac{1}{2\pi R_o C_{FLT}}$
 - AOL rolls off at -40dB/decade above pole freq and opamp runs out of PM

- Introducing R_{FLT} stabilizes the opamp
 - Shifts pole to a lower freq and produces a zero
 - Pole degrades AOL phase but zero reverses it
 - AOL rolls off at -20dB/decade above f_z

- Need zero within 1 decade above pole for adequate phase margin

\[
f_z \leq 10 \times f_p \leq 10 \times \frac{1}{2\pi R_{FLT} C_{FLT}}
\]

\[
R_{FLT} \geq R_o/9
\]

- Need $R_{FLT} \leq R_{SWITCH}/10$ for low distortion
 - Voltage divider between R_{FLT} and switch on-resistance attenuates input signal

\[
f_p = \frac{1}{2\pi(R_o + R_{FLT}) C_{FLT}} \quad f_z = \frac{1}{2\pi R_{FLT} C_{FLT}}
\]
Anti-aliasing Filter Components

- Need $C_{FLT} \geq 20 \times C_{SH}$
 - $C_{SH} = 59 pF \Rightarrow C_{FLT} \geq 1.18 nF$

- Need $\frac{R_o}{9} \leq R_{FLT} \leq \frac{R_{SWITCH}}{10}$
 - THS4521 R_o calculated from plot
 - $R_o \approx 90 \Omega \Rightarrow \frac{R_o}{9} \approx 10 \Omega$
 - ADS8881 has $R_{SWITCH} = 96 \Omega$
 - Picking $R_{FLT} = 10 \Omega$ satisfies
 $\frac{R_o}{9} \leq R_{FLT} \leq \frac{R_{SWITCH}}{9.6}$

<table>
<thead>
<tr>
<th>C_{FLT}</th>
<th>10nF</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{FLT}</td>
<td>10Ω</td>
</tr>
<tr>
<td>BW_{FLT}</td>
<td>800KHz</td>
</tr>
</tbody>
</table>

$R_{o_{cl}}(f) = \frac{R_o}{1 + A_{ol}(f)} \Rightarrow R_{o_{cl}}(GBW) = \frac{R_o}{1 + A_{ol}(GBW)}$

$A_{ol}(GBW) = 0 dB = 1V/V$ and THS4521 $GBW = 95 MHz$

$R_o(95 MHz) = 2 \times R_{o_{cl}}(95 MHz) = 180 \Omega$ diff or 90Ω SE
Input Driver Simulation: Stability
Input Driver Simulation: Noise

\[V_{n_{\text{RMS}}_{\text{ADC}}} = \frac{2 \times 4.5V}{2\sqrt{2}} \times 10^{-99} \approx 36uV_{\text{rms}} \]

\[V_{n_{\text{RMS}}_{\text{Inp}}} \approx 37\% \times V_{n_{\text{RMS}}_{\text{ADC}}} \]
Agenda

• System Specification
• Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design
• Verification & Summary
• Appendix: Introduction of TI Design and Precision Labs
Requirement

- **Accurate DC voltage** to ADC REF input that exhibits **minimal variation** with time and **fast load transients**
 1. Low offset
 2. Low drift, Low noise
 3. Low output impedance for load regulation

- **Signal chain:**
 - High precision voltage reference
 - Low noise, high precision, high speed opamp buffer
 - RC snubber network → provide low source impedance, preserves opamp BW and stability
Reference Driver Noise Contribution

Dominated by output noise of voltage reference

Need $V_{n_{REF_RMS}} < \frac{V_{n_{ADC_RMS}}}{3}$

$$\sqrt{V^2_{\frac{1}{f_{REF_RMS}}} + V^2_{BB_{REF_RMS}}} < \frac{1}{3} \times \frac{FSR}{2\sqrt{2}} \times 10^{\frac{-SNR(dB)}{20}}$$

Depends on BW of VREF output
Need to optimize BW for noise and settling
Settling \rightarrow wasteful power consumption!

$$\sqrt{\left(\frac{V_{1/f_{REF_pp}}}{6.6}\right)^2 + \left(e_{n_{REF}}\sqrt{f_{REF_3dB} \times \frac{\pi}{2}}\right)^2} < 12uV$$

Datasheet param

Not in datasheet but $e_{n_{REF}} \propto (I_{Q_{REF}})^{-1/2}$

Identify voltage references with higher $I_{Q_{REF}}$ and solve for f_{REF_3dB}
Voltage Reference and Filter Components

- Selected REF5045 w/ IQ = 1mA
 - High accuracy 4.5V ± 0.05% output
 - Very low temperature drift (3ppm/°C):
 - $I_{Q_REF} = 1.0 \text{mA} \Rightarrow e_{n} \approx 223 nV/\sqrt{Hz}$
 - $V_{1/f_REF_pp} = 13.5 \mu V_{pp}$

- Solving inequality for f_{REF_3dB}:
 \[
 f_{REF_3dB} < 234.5 \text{Hz}
 \]

- Need $C_{REF_FLT} > 100 nF$ to keep thermal noise below 0.2uVrms
 - Chose $C_{REF_FLT} = 1 \mu F$

- $R_{REF_FLT} > \frac{1}{2\pi \times f_{REF_3dB} \times C_{REF_FLT}} = 679 \Omega$
 - Chose $R_{REF_FLT} = 1K \Omega$

\[
\sqrt{\left(\frac{V_{1/f_REF_pp}}{6.6}\right)^2 + \left(e_{n_REF} \sqrt{f_{REF_3dB} \times \frac{\pi}{2}}\right)^2} < 12 \text{uV}
\]
Reference Driver Load Regulation

• SAR ADC has a capacitive DAC \(\Rightarrow \) creates changing cap load on the REF input during conversion
 – Large transient load currents (several mA) cause Vref to droop
 – Output errors occur if Vref error >1LSB when comparator makes bit decision
 – Vref driver needs to regulate dynamic load so that Vref error < 1LSB during conversion

Sources: Chris Hall & Bob Benjamin
Reference Driver Load Regulation

- C_{BUF_FLT} functions as near-ideal voltage source supplying most of the load current
 - C_{BUF_FLT} loses charge and voltage droops
 - Need C_{BUF_FLT} to be large enough to regulate V_{ref} to <1LSB error

Total charge transferred to REF input during conversion window T_{CONV_MAX}:

$$Q_{REF} = T_{CONV_MAX} \times l_{_ref}$$

C_{BUF_FLT} supplies $>66\%$ of Q_{REF} and drops by ΔV after T_{CONV_MAX}

$$C_{BUF_FLT} \times \Delta V > \frac{2}{3} \times Q_{REF}$$

Need $\Delta V < 1$LSB = \frac{FSR}{2^N}$

$$C_{BUF_FLT} > \frac{2}{3} \times \frac{l_{_ref} \times T_{CONV_MAX} \times 2^N}{FSR}$$

Need $C_{BUF_FLT} > 9.6\mu F$, chose $C_{BUF_FLT} = 10\mu F$
Reference Buffer

• Need low output impedance over wide freq range + high accuracy
 – Need loop gain for low Zout ➔ need opamp with high GBW
 – Accuracy ➔ low offset, low offset drift, low noise density

• Can use OPA350 but consumes too much power for this design (IQ > 5mA)

• “Composite” amp config is power-efficient (IQ < 800uA)
 – THS4281: high speed, low accuracy
 – OPA333: low speed, high accuracy
 – OPA333 noisy but output is heavily filtered

• At DC the OPA corrects the THS output for offset and drift

• At AC the THS buffers the OPA output and provides good regulation against large high frequency load transients
Snubber Network

- C_{BUF_FLT} reduces stability of driving opamp

- Placing R_{BUF_FLT} between buffer out and REF input improves stability but cuts BW and increases output impedance

- “Snubber” configuration good for stability and settling response

- R_{BUF_FLT} value required for opamp stability determined via simulation
Snubber Resistor and Ref Buffer Stability

Select $R_{BUF_FLT} = 0.25\Omega \Rightarrow 50 \text{ – } 60^\circ$ phase margin

Output settles to $<0.5\text{LSB (19-bit level)}$ in 604ns
Reference Driver Noise Simulation

• Noise densities integrated over 1 decade above the BW of the reference path
 – BW = GBW of THS4281 buffer = 95MHz

• Simulated noise contribution of the REF driver appears to exceed total ADC RMS noise (~35\text{uVrms})
 – Macro-models are often conservative

• Build and bench test
PCB Layout Guidelines

- Minimize length of trace supplying ADC REF input
 - parasitic inductance can cause instability and settling issues
 - Minimizes EMI/RFI

- Keep components close together and close to the ADC

- Keep traces of differential signals as symmetrical as possible
 - Minimizes common-mode errors
Agenda

• System Specification
• Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design
• Verification & Summary
• Appendix: Introduction of TI Design and Precision Labs
System Performance Verification: DC Noise

- First order check of board design
- Measure cumulative system noise referred to ADC input
 - Apply constant DC input to ADC and plot histogram of data from multiple conversions
- Histogram should be Gaussian
 - Non-Gaussian features \rightarrow ADC DNL issues, power supply decoupling issues, poor grounding, layout issues
System Dynamic Performance

\[THD = 10 \log \left(10^{-115/10} + 10^{-112.4/10}\right) = -110 dB \]
Summary of System Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal (for 10KHz sine input)</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD</td>
<td>< -110dB</td>
<td>-110dB</td>
</tr>
<tr>
<td>SNR</td>
<td>> 98dB</td>
<td>98.74dB</td>
</tr>
<tr>
<td>INL</td>
<td><= +/-1.5LSB</td>
<td><= +/-1.5LSB</td>
</tr>
<tr>
<td>Total Power</td>
<td>< 40mW</td>
<td>39.4mW</td>
</tr>
</tbody>
</table>

26-point INL for inputs between +/-4.45V
Agenda

• System Specification
• Theory of Operation
 – ADC Selection
 – Input Driver Design
 – Reference Driver Design
• Verification & Summary

• Appendix: Introduction of TI Design and Precision Labs
Introduction to TI Precision Labs

TI Precision Labs

TI Precision Labs is the electronics industry’s first comprehensive online classroom for analog engineers. The on-demand curriculum pairs theory and applied lab exercises to deepen the technical expertise of experienced engineers and accelerate the development of those early in their career. This free modular curriculum includes over 30 hands-on trainings and lab videos, covering analog amplifier design considerations with online course work.

Learn more about the National Instruments VirtualBench™ and TI Precision Labs - Op Amps Hardware Evaluation Module used in the hands-on lab modules.

Download and install TINA-TI, the preferred simulator used exclusively with TI Precision Labs - Op Amps.

Download the Analog Engineer’s Pocket Reference e-Book.

Internet Explorer® users may experience issues viewing Precision Labs. We recommend using an alternative browser, such as Chrome™, Firefox® or Safari®.

- Introduction
- Input Voltage Offset (Vos) and Input Bias Current (Ib)
- Input and Output Limitations
- Bandwidth
- Slew Rate
- Noise
- Stability
- Electrostatic Discharge (ESD)
- Electrical Overstress (EOS)
Introduction to TI Precision Labs
Introduction to TI Design

- Design Article => Reduce the Design Timing Cost!!!
- Design File => Free!!!
 - TINA-TI Simulation
 - Schematic
 - PCB Layout (Gerber)
 - BOM
TI Precision Designs and Tools

- **18-Bit Data Acquisition (DAQ) Block Optimized for 1-μs Full-Scale Step Response** – SLAU512
- **18-Bit, 1-MSPS Data Acquisition (DAQ) Block Optimized for Lowest Power** – SLAU513
- **18-Bit, 10kSPS Data Acquisition (DAQ) Block Optimized for Ultra Low Power < 1mW** – SLAU514
- **18-Bit, 1-MSPS Data Acquisition (DAQ) Block Optimized for Lowest Distortion and Noise** – SLAU515

ADS8881 EVM – PDK (MMB0)

ADC-PRO
The 4 Designs and Optimizations

• To illustrate how to achieve an optimal tradeoff of response time vs. performance vs. power consumption depending on application requirements

• 1-μs Full-Scale Step Response
 – OPA2350 input opamp
 – 8MHz anti-aliasing filter
 – REF5045+THS4281+OPA333 REF driver

• Lowest Distortion and Noise @ 1MSPS
 – THS4521 input opamp
 – 800KHz anti-aliasing filter
 – REF5045+THS4281+OPA333 REF driver

• Lowest Power @ 1MSPS
 – OPA2320 input opamp
 – 1.6MHz anti-aliasing filter
 – REF5045+THS4281+OPA333 REF driver

• Ultra Low Power @10KSPS
 – OPA2333 input opamp
 – 17KHz anti-aliasing filter
 – OPA313 REF driver
Performance Comparison

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Vref</th>
<th>Power</th>
<th>Effective Resolution</th>
<th>ENOB</th>
<th>SNR</th>
<th>Linearity</th>
<th>Response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-μs Full-Scale Step Response</td>
<td>4.5</td>
<td>60mW</td>
<td>18</td>
<td>15.5</td>
<td>95dB</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Lowest Distortion and Noise @ 1MSPS</td>
<td>4.5</td>
<td>40mW</td>
<td>18</td>
<td>16</td>
<td>99dB</td>
<td>Excellent</td>
<td>Fair</td>
</tr>
<tr>
<td>Lowest Power @ 1MSPS</td>
<td>4.5</td>
<td>30mW</td>
<td>18</td>
<td>16</td>
<td>99dB</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Ultra Low Power @ 10KSPS</td>
<td>2.5</td>
<td>0.6mW</td>
<td>17</td>
<td>14.6</td>
<td>92dB</td>
<td>Good</td>
<td>Poor</td>
</tr>
</tbody>
</table>
Thank You & Questions

立即加入 myTI 會員

www.ti.com/ww/tw/tidesigns/
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio
Amplifiers
Data Converters
dataconverter.ti.com
DLP® Products
www.dlp.com
DSP
dsp.ti.com
Clocks and Timers
www.ti.com/clocks
Interface
interface.ti.com
Logic
logic.ti.com
Power Mgmt
power.ti.com
Microcontrollers
microcontroller.ti.com
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications
Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated