KeyStone II
ARM Cortex-A15
CorePac Overview
ARM A15 CorePac in KeyStone II

Standard ARM Cortex-A15 MPCore processor
- Cortex-A15 MPCore version r2p2
- Quad-core, dual-core, and single-core variants
- 4096kB L2 cache
 - 20cc L1 miss L2 hit load to use
 - Same latency on dual and single core variants
- Per core NEON (SIMD co-processor)
 - 128-bit wide SIMDv2 processor
 - 8, 16, 32, and 64-bit data types
 - Single-precision floating point
- Per core VFP (vector floating point co-processor)
 - Single and double-precision floating point, VFPv4
- Error correction and detection on L1 and L2 caches
- AXI-4 ACE interface for cache coherent interconnect
- GIC-400 Interrupt Controller (SoC level)
Each Cortex-A15 Core in the MPCore

- Full ARMv7-A architecture instruction set
- 3-issue out-of-order pipeline (3-12 stages)
- Dynamic branch prediction
 - 2k entry Branch Target Buffer (BTB), 8k entry Global History Buffer (GHB)
- 32kB data L1 cache and 32kB L1 instruction cache
 - 4cc load to use latency (typically hidden by out-of-order pipeline)
- Full support for virtualization, 32bit virtual and 40bit physical addresses
 - 2-level Memory Management unit (MMU)
 - Virtual to intermediate physical address
 - Intermediate physical to physical address
 - Three 32-entry fully associative L1 TLBs
 - Instruction fetch, load, store
 - 512-entry 4-way set associative L2 TLB
- Performance Monitoring Unit (6 counter PMUv2)
KeyStone II Quad Cortex-A15 MPCore

ARM Cortex-A15 MPCore

ARM GIC-400 interrupt controller

Access to and from the SoC
KeyStone II ARM CorePac: Key Features

• Cache coherency for ARM CorePac and IO
 – ARM CorePac and DDR3 (DDR3A for those devices with multiple DDR3s)
 – MSMC SRAM (on-chip scratch memory)
• Low latency and high bandwidth connection from CorePac to external memory
• Virtualization support with 40-bit physical addressing (large physical address extensions, LPAE)
• Large L2 cache (4MB, 16-way set associative)
• Reliability and availability with ECC in internal and external memories
• High-performance IO from user space and any paravirtualized guest OS
• Energy efficiency
KeyStone II: IO Cache Coherency

- IO Coherency for the ARM, SMP for the quad cluster
 - DDR3A from 0x08_0000_0000 to 0x09_FFFF_FFFF
 - MSMC SRAM
- Coherency for ease of use and performance
Benchmarks: Core Only, Memory Latency

- Dhrystone, DMIPS/MHz, CPU core and L1 only
 - 3.5DMIPS/MHz (highly dependant on compiler)
 - 19600DMIPS with KeyStone II Quad-ARM CorePac at 1.4GHz
- Floating point
 - Quad single-precision IEEE-754 FMAC per cycle
- Memory Latency, load-to-use latency
 - 4cc L1D hit, typically hidden by A15 micro architecture
 - 20cc L2 hit (4MB)
 - MSMC2 SRAM: ~50cc
 - External Memory: ~100ns L2 miss to DDR page that is open
Memory Bandwidth Benchmarks

DDR3-1600 theoretical throughput 12.8GB/s

~30% to ~50% achieved

Physical placement of arrays is critical; Linux virtual memory with 4kB pages is good.

Memory Bandwidth, external memory only:

- Stream Copy \(a(i) = b(i) \), where \(a \) and \(b \) are arrays.
- Stream Scale \(a(i) = q \times b(i) \), where \(a \) and \(b \) are arrays, and \(q \) is a constant.
- Stream Add computes \(a(i) = b(i) + c(i) \), where \(a, b, \) and \(c \) are arrays.
- Stream Triad computes \(a(i) = b(i) + q \times c(i) \), where \(a, b, \) and \(c \) are arrays, and \(q \) is a constant.
- Array sizes are defined to force missing on cache regardless of size
Virtualization

- Long-descriptor format page tables
 - 40-bit physical addressing (LPAE)
 - Short-descriptor with 32-bit physical addressing with ARM CorePac running from DDR3B
- Three-level data structure to get to 4kB pages at each stage
 - Two levels to get to 2MB pages (Linux huge pages)
 - TLBs cache a page per entry
- Hypervisor privilege (3rd level, user, supervisor)
 - Manages the second-stage address translation per each virtual machine
 - HW traps exceptions, CP15 register access and WFI/WFE
- Paravirtualized drivers or direct IO register access for IO performance
- IO accesses use MPAX
Reliability

• KeyStone II ARM CorePac is designed for high-reliability embedded applications.
 – 100k power on hours at 105C
• Data caches support SECDED (single-bit error correct, double-bit error detect).
 – L1D and L2 caches data and tag RAMs
• Program caches support parity and refetch on error.
 – L1I cache
 – Tag RAM
 – Branch Target Buffer (BTB)
Energy Efficiency

• Clock gating inside the ARM CorePac:
 – Total dynamic power consumption for a fully-loaded 1.4GHz core will range from 1.2W to 0.35W depending on the type of instructions it runs.
 – Wait for interrupt and event (WFI, WFE) instructions bring the dynamic power down to <0.1W per core.

• Power switches per core and per quad cluster including L2:
 – Each ARM A15 core can be shut down independently
 – The entire Quad-ARM A15 CorePac, including the 4MB/1MB L2 cache, can also be shut down.
 – Reduces static power to <5%
KeyStone II Architecture

- Memory Subsystem
 - 72-Bit DDR3a EMIF
 - 72-Bit DDR3b EMIF
- Debug & Trace
 - ARM Boot ROM
 - Semaphore
 - Secure Mode
 - Power Management
 - PLL
 - EDMA
- Miscellaneous
- HyperLink
- TeraNet
- Multicore Navigator
 - Queue Manager
 - Packet DMA
- Device-Specific
 - EMIF 16
 - GPIO x 32
 - I²C x 3
 - USB 3.0 x 2
 - UART x 2
 - SPI x 3
 - PCIe x 2
 - SRI x 4
- 3-Port Ethernet Switch
 - 10GBE
- 5-Port Ethernet Switch
 - 10GBE
- Network Coprocessor
- Security Accelerator
- Packet Accelerator

1-4 ARM Cores & 1-8 DSP Cores @ up to 1.4 GHz
For More Information

• ARM Reference Manuals
 http://infocenter.arm.com/help/index.jsp
 – A15 Technical Reference Manual (TRM) r2p2
 – GIC-400 r0p0rel1

• STREAM Benchmark
 http://www.cs.virginia.edu/stream/

• For questions regarding topics covered in this training, visit the support forums at the TI E2E Community website.

• KeyStone SoC & Software Overview Training